Metamath Proof Explorer
Theorem dmi
Description: The domain of the identity relation is the universe. (Contributed by NM, 30-Apr-1998) (Proof shortened by Andrew Salmon, 27-Aug-2011)
|
|
Ref |
Expression |
|
Assertion |
dmi |
⊢ dom I = V |
Proof
| Step |
Hyp |
Ref |
Expression |
| 1 |
|
eqv |
⊢ ( dom I = V ↔ ∀ 𝑥 𝑥 ∈ dom I ) |
| 2 |
|
ax6ev |
⊢ ∃ 𝑦 𝑦 = 𝑥 |
| 3 |
|
vex |
⊢ 𝑦 ∈ V |
| 4 |
3
|
ideq |
⊢ ( 𝑥 I 𝑦 ↔ 𝑥 = 𝑦 ) |
| 5 |
|
equcom |
⊢ ( 𝑥 = 𝑦 ↔ 𝑦 = 𝑥 ) |
| 6 |
4 5
|
bitri |
⊢ ( 𝑥 I 𝑦 ↔ 𝑦 = 𝑥 ) |
| 7 |
6
|
exbii |
⊢ ( ∃ 𝑦 𝑥 I 𝑦 ↔ ∃ 𝑦 𝑦 = 𝑥 ) |
| 8 |
2 7
|
mpbir |
⊢ ∃ 𝑦 𝑥 I 𝑦 |
| 9 |
|
vex |
⊢ 𝑥 ∈ V |
| 10 |
9
|
eldm |
⊢ ( 𝑥 ∈ dom I ↔ ∃ 𝑦 𝑥 I 𝑦 ) |
| 11 |
8 10
|
mpbir |
⊢ 𝑥 ∈ dom I |
| 12 |
1 11
|
mpgbir |
⊢ dom I = V |