Metamath Proof Explorer
Theorem dmi
Description: The domain of the identity relation is the universe. (Contributed by NM, 30-Apr-1998) (Proof shortened by Andrew Salmon, 27-Aug-2011)
|
|
Ref |
Expression |
|
Assertion |
dmi |
⊢ dom I = V |
Proof
Step |
Hyp |
Ref |
Expression |
1 |
|
eqv |
⊢ ( dom I = V ↔ ∀ 𝑥 𝑥 ∈ dom I ) |
2 |
|
ax6ev |
⊢ ∃ 𝑦 𝑦 = 𝑥 |
3 |
|
vex |
⊢ 𝑦 ∈ V |
4 |
3
|
ideq |
⊢ ( 𝑥 I 𝑦 ↔ 𝑥 = 𝑦 ) |
5 |
|
equcom |
⊢ ( 𝑥 = 𝑦 ↔ 𝑦 = 𝑥 ) |
6 |
4 5
|
bitri |
⊢ ( 𝑥 I 𝑦 ↔ 𝑦 = 𝑥 ) |
7 |
6
|
exbii |
⊢ ( ∃ 𝑦 𝑥 I 𝑦 ↔ ∃ 𝑦 𝑦 = 𝑥 ) |
8 |
2 7
|
mpbir |
⊢ ∃ 𝑦 𝑥 I 𝑦 |
9 |
|
vex |
⊢ 𝑥 ∈ V |
10 |
9
|
eldm |
⊢ ( 𝑥 ∈ dom I ↔ ∃ 𝑦 𝑥 I 𝑦 ) |
11 |
8 10
|
mpbir |
⊢ 𝑥 ∈ dom I |
12 |
1 11
|
mpgbir |
⊢ dom I = V |