Metamath Proof Explorer


Theorem dmi

Description: The domain of the identity relation is the universe. (Contributed by NM, 30-Apr-1998) (Proof shortened by Andrew Salmon, 27-Aug-2011)

Ref Expression
Assertion dmi dom I = V

Proof

Step Hyp Ref Expression
1 eqv ( dom I = V ↔ ∀ 𝑥 𝑥 ∈ dom I )
2 ax6ev 𝑦 𝑦 = 𝑥
3 vex 𝑦 ∈ V
4 3 ideq ( 𝑥 I 𝑦𝑥 = 𝑦 )
5 equcom ( 𝑥 = 𝑦𝑦 = 𝑥 )
6 4 5 bitri ( 𝑥 I 𝑦𝑦 = 𝑥 )
7 6 exbii ( ∃ 𝑦 𝑥 I 𝑦 ↔ ∃ 𝑦 𝑦 = 𝑥 )
8 2 7 mpbir 𝑦 𝑥 I 𝑦
9 vex 𝑥 ∈ V
10 9 eldm ( 𝑥 ∈ dom I ↔ ∃ 𝑦 𝑥 I 𝑦 )
11 8 10 mpbir 𝑥 ∈ dom I
12 1 11 mpgbir dom I = V