Metamath Proof Explorer


Theorem dminss

Description: An upper bound for intersection with a domain. Theorem 40 of Suppes p. 66, who calls it "somewhat surprising." (Contributed by NM, 11-Aug-2004)

Ref Expression
Assertion dminss ( dom 𝑅𝐴 ) ⊆ ( 𝑅 “ ( 𝑅𝐴 ) )

Proof

Step Hyp Ref Expression
1 19.8a ( ( 𝑥𝐴𝑥 𝑅 𝑦 ) → ∃ 𝑥 ( 𝑥𝐴𝑥 𝑅 𝑦 ) )
2 1 ancoms ( ( 𝑥 𝑅 𝑦𝑥𝐴 ) → ∃ 𝑥 ( 𝑥𝐴𝑥 𝑅 𝑦 ) )
3 vex 𝑦 ∈ V
4 3 elima2 ( 𝑦 ∈ ( 𝑅𝐴 ) ↔ ∃ 𝑥 ( 𝑥𝐴𝑥 𝑅 𝑦 ) )
5 2 4 sylibr ( ( 𝑥 𝑅 𝑦𝑥𝐴 ) → 𝑦 ∈ ( 𝑅𝐴 ) )
6 simpl ( ( 𝑥 𝑅 𝑦𝑥𝐴 ) → 𝑥 𝑅 𝑦 )
7 vex 𝑥 ∈ V
8 3 7 brcnv ( 𝑦 𝑅 𝑥𝑥 𝑅 𝑦 )
9 6 8 sylibr ( ( 𝑥 𝑅 𝑦𝑥𝐴 ) → 𝑦 𝑅 𝑥 )
10 5 9 jca ( ( 𝑥 𝑅 𝑦𝑥𝐴 ) → ( 𝑦 ∈ ( 𝑅𝐴 ) ∧ 𝑦 𝑅 𝑥 ) )
11 10 eximi ( ∃ 𝑦 ( 𝑥 𝑅 𝑦𝑥𝐴 ) → ∃ 𝑦 ( 𝑦 ∈ ( 𝑅𝐴 ) ∧ 𝑦 𝑅 𝑥 ) )
12 7 eldm ( 𝑥 ∈ dom 𝑅 ↔ ∃ 𝑦 𝑥 𝑅 𝑦 )
13 12 anbi1i ( ( 𝑥 ∈ dom 𝑅𝑥𝐴 ) ↔ ( ∃ 𝑦 𝑥 𝑅 𝑦𝑥𝐴 ) )
14 elin ( 𝑥 ∈ ( dom 𝑅𝐴 ) ↔ ( 𝑥 ∈ dom 𝑅𝑥𝐴 ) )
15 19.41v ( ∃ 𝑦 ( 𝑥 𝑅 𝑦𝑥𝐴 ) ↔ ( ∃ 𝑦 𝑥 𝑅 𝑦𝑥𝐴 ) )
16 13 14 15 3bitr4i ( 𝑥 ∈ ( dom 𝑅𝐴 ) ↔ ∃ 𝑦 ( 𝑥 𝑅 𝑦𝑥𝐴 ) )
17 7 elima2 ( 𝑥 ∈ ( 𝑅 “ ( 𝑅𝐴 ) ) ↔ ∃ 𝑦 ( 𝑦 ∈ ( 𝑅𝐴 ) ∧ 𝑦 𝑅 𝑥 ) )
18 11 16 17 3imtr4i ( 𝑥 ∈ ( dom 𝑅𝐴 ) → 𝑥 ∈ ( 𝑅 “ ( 𝑅𝐴 ) ) )
19 18 ssriv ( dom 𝑅𝐴 ) ⊆ ( 𝑅 “ ( 𝑅𝐴 ) )