Metamath Proof Explorer


Theorem dmiun

Description: The domain of an indexed union. (Contributed by Mario Carneiro, 26-Apr-2016)

Ref Expression
Assertion dmiun dom 𝑥𝐴 𝐵 = 𝑥𝐴 dom 𝐵

Proof

Step Hyp Ref Expression
1 rexcom4 ( ∃ 𝑥𝐴𝑧𝑦 , 𝑧 ⟩ ∈ 𝐵 ↔ ∃ 𝑧𝑥𝐴𝑦 , 𝑧 ⟩ ∈ 𝐵 )
2 vex 𝑦 ∈ V
3 2 eldm2 ( 𝑦 ∈ dom 𝐵 ↔ ∃ 𝑧𝑦 , 𝑧 ⟩ ∈ 𝐵 )
4 3 rexbii ( ∃ 𝑥𝐴 𝑦 ∈ dom 𝐵 ↔ ∃ 𝑥𝐴𝑧𝑦 , 𝑧 ⟩ ∈ 𝐵 )
5 eliun ( ⟨ 𝑦 , 𝑧 ⟩ ∈ 𝑥𝐴 𝐵 ↔ ∃ 𝑥𝐴𝑦 , 𝑧 ⟩ ∈ 𝐵 )
6 5 exbii ( ∃ 𝑧𝑦 , 𝑧 ⟩ ∈ 𝑥𝐴 𝐵 ↔ ∃ 𝑧𝑥𝐴𝑦 , 𝑧 ⟩ ∈ 𝐵 )
7 1 4 6 3bitr4ri ( ∃ 𝑧𝑦 , 𝑧 ⟩ ∈ 𝑥𝐴 𝐵 ↔ ∃ 𝑥𝐴 𝑦 ∈ dom 𝐵 )
8 2 eldm2 ( 𝑦 ∈ dom 𝑥𝐴 𝐵 ↔ ∃ 𝑧𝑦 , 𝑧 ⟩ ∈ 𝑥𝐴 𝐵 )
9 eliun ( 𝑦 𝑥𝐴 dom 𝐵 ↔ ∃ 𝑥𝐴 𝑦 ∈ dom 𝐵 )
10 7 8 9 3bitr4i ( 𝑦 ∈ dom 𝑥𝐴 𝐵𝑦 𝑥𝐴 dom 𝐵 )
11 10 eqriv dom 𝑥𝐴 𝐵 = 𝑥𝐴 dom 𝐵