Metamath Proof Explorer


Theorem dmmpt1

Description: The domain of the mapping operation, deduction form. (Contributed by Glauco Siliprandi, 5-Jan-2025)

Ref Expression
Hypotheses dmmpt1.x 𝑥 𝜑
dmmpt1.1 𝑥 𝐵
dmmpt1.c ( ( 𝜑𝑥𝐵 ) → 𝐶𝑉 )
Assertion dmmpt1 ( 𝜑 → dom ( 𝑥𝐵𝐶 ) = 𝐵 )

Proof

Step Hyp Ref Expression
1 dmmpt1.x 𝑥 𝜑
2 dmmpt1.1 𝑥 𝐵
3 dmmpt1.c ( ( 𝜑𝑥𝐵 ) → 𝐶𝑉 )
4 eqid ( 𝑥𝐵𝐶 ) = ( 𝑥𝐵𝐶 )
5 1 2 4 3 dmmptdff ( 𝜑 → dom ( 𝑥𝐵𝐶 ) = 𝐵 )