Metamath Proof Explorer
Description: The domain of the mapping operation, deduction form. (Contributed by Glauco Siliprandi, 5-Jan-2025)
|
|
Ref |
Expression |
|
Hypotheses |
dmmpt1.x |
⊢ Ⅎ 𝑥 𝜑 |
|
|
dmmpt1.1 |
⊢ Ⅎ 𝑥 𝐵 |
|
|
dmmpt1.c |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐵 ) → 𝐶 ∈ 𝑉 ) |
|
Assertion |
dmmpt1 |
⊢ ( 𝜑 → dom ( 𝑥 ∈ 𝐵 ↦ 𝐶 ) = 𝐵 ) |
Proof
Step |
Hyp |
Ref |
Expression |
1 |
|
dmmpt1.x |
⊢ Ⅎ 𝑥 𝜑 |
2 |
|
dmmpt1.1 |
⊢ Ⅎ 𝑥 𝐵 |
3 |
|
dmmpt1.c |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐵 ) → 𝐶 ∈ 𝑉 ) |
4 |
|
eqid |
⊢ ( 𝑥 ∈ 𝐵 ↦ 𝐶 ) = ( 𝑥 ∈ 𝐵 ↦ 𝐶 ) |
5 |
1 2 4 3
|
dmmptdff |
⊢ ( 𝜑 → dom ( 𝑥 ∈ 𝐵 ↦ 𝐶 ) = 𝐵 ) |