Metamath Proof Explorer


Theorem dmmptd

Description: The domain of the mapping operation, deduction form. (Contributed by Glauco Siliprandi, 11-Dec-2019)

Ref Expression
Hypotheses dmmptd.a 𝐴 = ( 𝑥𝐵𝐶 )
dmmptd.c ( ( 𝜑𝑥𝐵 ) → 𝐶𝑉 )
Assertion dmmptd ( 𝜑 → dom 𝐴 = 𝐵 )

Proof

Step Hyp Ref Expression
1 dmmptd.a 𝐴 = ( 𝑥𝐵𝐶 )
2 dmmptd.c ( ( 𝜑𝑥𝐵 ) → 𝐶𝑉 )
3 1 dmmpt dom 𝐴 = { 𝑥𝐵𝐶 ∈ V }
4 2 elexd ( ( 𝜑𝑥𝐵 ) → 𝐶 ∈ V )
5 4 ralrimiva ( 𝜑 → ∀ 𝑥𝐵 𝐶 ∈ V )
6 rabid2 ( 𝐵 = { 𝑥𝐵𝐶 ∈ V } ↔ ∀ 𝑥𝐵 𝐶 ∈ V )
7 5 6 sylibr ( 𝜑𝐵 = { 𝑥𝐵𝐶 ∈ V } )
8 3 7 eqtr4id ( 𝜑 → dom 𝐴 = 𝐵 )