Metamath Proof Explorer


Theorem dmmptdf

Description: The domain of the mapping operation, deduction form. (Contributed by Glauco Siliprandi, 26-Jun-2021)

Ref Expression
Hypotheses dmmptdf.x 𝑥 𝜑
dmmptdf.a 𝐴 = ( 𝑥𝐵𝐶 )
dmmptdf.c ( ( 𝜑𝑥𝐵 ) → 𝐶𝑉 )
Assertion dmmptdf ( 𝜑 → dom 𝐴 = 𝐵 )

Proof

Step Hyp Ref Expression
1 dmmptdf.x 𝑥 𝜑
2 dmmptdf.a 𝐴 = ( 𝑥𝐵𝐶 )
3 dmmptdf.c ( ( 𝜑𝑥𝐵 ) → 𝐶𝑉 )
4 2 dmmpt dom 𝐴 = { 𝑥𝐵𝐶 ∈ V }
5 3 elexd ( ( 𝜑𝑥𝐵 ) → 𝐶 ∈ V )
6 1 5 ralrimia ( 𝜑 → ∀ 𝑥𝐵 𝐶 ∈ V )
7 rabid2 ( 𝐵 = { 𝑥𝐵𝐶 ∈ V } ↔ ∀ 𝑥𝐵 𝐶 ∈ V )
8 6 7 sylibr ( 𝜑𝐵 = { 𝑥𝐵𝐶 ∈ V } )
9 4 8 eqtr4id ( 𝜑 → dom 𝐴 = 𝐵 )