Metamath Proof Explorer
		
		
		
		Description:  The domain of the mapping operation, deduction form.  (Contributed by Glauco Siliprandi, 26-Jun-2021)
		
			
				
					 | 
					 | 
					Ref | 
					Expression | 
				
					
						 | 
						Hypotheses | 
						dmmptdf.x | 
						⊢ Ⅎ 𝑥 𝜑  | 
					
					
						 | 
						 | 
						dmmptdf.a | 
						⊢ 𝐴  =  ( 𝑥  ∈  𝐵  ↦  𝐶 )  | 
					
					
						 | 
						 | 
						dmmptdf.c | 
						⊢ ( ( 𝜑  ∧  𝑥  ∈  𝐵 )  →  𝐶  ∈  𝑉 )  | 
					
				
					 | 
					Assertion | 
					dmmptdf | 
					⊢  ( 𝜑  →  dom  𝐴  =  𝐵 )  | 
				
			
		
		
			
				Proof
				
					
						| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							dmmptdf.x | 
							⊢ Ⅎ 𝑥 𝜑  | 
						
						
							| 2 | 
							
								
							 | 
							dmmptdf.a | 
							⊢ 𝐴  =  ( 𝑥  ∈  𝐵  ↦  𝐶 )  | 
						
						
							| 3 | 
							
								
							 | 
							dmmptdf.c | 
							⊢ ( ( 𝜑  ∧  𝑥  ∈  𝐵 )  →  𝐶  ∈  𝑉 )  | 
						
						
							| 4 | 
							
								
							 | 
							nfcv | 
							⊢ Ⅎ 𝑥 𝐵  | 
						
						
							| 5 | 
							
								1 4 2 3
							 | 
							dmmptdff | 
							⊢ ( 𝜑  →  dom  𝐴  =  𝐵 )  |