Description: The domain of the mapping operation, deduction form. (Contributed by Glauco Siliprandi, 26-Jun-2021)
Ref | Expression | ||
---|---|---|---|
Hypotheses | dmmptdf.x | ⊢ Ⅎ 𝑥 𝜑 | |
dmmptdf.a | ⊢ 𝐴 = ( 𝑥 ∈ 𝐵 ↦ 𝐶 ) | ||
dmmptdf.c | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐵 ) → 𝐶 ∈ 𝑉 ) | ||
Assertion | dmmptdf | ⊢ ( 𝜑 → dom 𝐴 = 𝐵 ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dmmptdf.x | ⊢ Ⅎ 𝑥 𝜑 | |
2 | dmmptdf.a | ⊢ 𝐴 = ( 𝑥 ∈ 𝐵 ↦ 𝐶 ) | |
3 | dmmptdf.c | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐵 ) → 𝐶 ∈ 𝑉 ) | |
4 | 2 | dmmpt | ⊢ dom 𝐴 = { 𝑥 ∈ 𝐵 ∣ 𝐶 ∈ V } |
5 | 3 | elexd | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐵 ) → 𝐶 ∈ V ) |
6 | 1 5 | ralrimia | ⊢ ( 𝜑 → ∀ 𝑥 ∈ 𝐵 𝐶 ∈ V ) |
7 | rabid2 | ⊢ ( 𝐵 = { 𝑥 ∈ 𝐵 ∣ 𝐶 ∈ V } ↔ ∀ 𝑥 ∈ 𝐵 𝐶 ∈ V ) | |
8 | 6 7 | sylibr | ⊢ ( 𝜑 → 𝐵 = { 𝑥 ∈ 𝐵 ∣ 𝐶 ∈ V } ) |
9 | 4 8 | eqtr4id | ⊢ ( 𝜑 → dom 𝐴 = 𝐵 ) |