Metamath Proof Explorer


Theorem dmmptg

Description: The domain of the mapping operation is the stated domain, if the function value is always a set. (Contributed by Mario Carneiro, 9-Feb-2013) (Revised by Mario Carneiro, 14-Sep-2013)

Ref Expression
Assertion dmmptg ( ∀ 𝑥𝐴 𝐵𝑉 → dom ( 𝑥𝐴𝐵 ) = 𝐴 )

Proof

Step Hyp Ref Expression
1 eqid ( 𝑥𝐴𝐵 ) = ( 𝑥𝐴𝐵 )
2 1 dmmpt dom ( 𝑥𝐴𝐵 ) = { 𝑥𝐴𝐵 ∈ V }
3 elex ( 𝐵𝑉𝐵 ∈ V )
4 3 ralimi ( ∀ 𝑥𝐴 𝐵𝑉 → ∀ 𝑥𝐴 𝐵 ∈ V )
5 rabid2 ( 𝐴 = { 𝑥𝐴𝐵 ∈ V } ↔ ∀ 𝑥𝐴 𝐵 ∈ V )
6 4 5 sylibr ( ∀ 𝑥𝐴 𝐵𝑉𝐴 = { 𝑥𝐴𝐵 ∈ V } )
7 2 6 eqtr4id ( ∀ 𝑥𝐴 𝐵𝑉 → dom ( 𝑥𝐴𝐵 ) = 𝐴 )