Metamath Proof Explorer


Theorem dmmptif

Description: Domain of the mapping operation. (Contributed by Glauco Siliprandi, 21-Dec-2024)

Ref Expression
Hypotheses dmmptif.1 𝑥 𝐴
dmmptif.2 𝐵 ∈ V
dmmptif.3 𝐹 = ( 𝑥𝐴𝐵 )
Assertion dmmptif dom 𝐹 = 𝐴

Proof

Step Hyp Ref Expression
1 dmmptif.1 𝑥 𝐴
2 dmmptif.2 𝐵 ∈ V
3 dmmptif.3 𝐹 = ( 𝑥𝐴𝐵 )
4 1 2 3 fnmptif 𝐹 Fn 𝐴
5 fndm ( 𝐹 Fn 𝐴 → dom 𝐹 = 𝐴 )
6 4 5 ax-mp dom 𝐹 = 𝐴