Metamath Proof Explorer
Description: Domain of the mapping operation. (Contributed by Glauco Siliprandi, 21-Dec-2024)
|
|
Ref |
Expression |
|
Hypotheses |
dmmptif.1 |
⊢ Ⅎ 𝑥 𝐴 |
|
|
dmmptif.2 |
⊢ 𝐵 ∈ V |
|
|
dmmptif.3 |
⊢ 𝐹 = ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) |
|
Assertion |
dmmptif |
⊢ dom 𝐹 = 𝐴 |
Proof
Step |
Hyp |
Ref |
Expression |
1 |
|
dmmptif.1 |
⊢ Ⅎ 𝑥 𝐴 |
2 |
|
dmmptif.2 |
⊢ 𝐵 ∈ V |
3 |
|
dmmptif.3 |
⊢ 𝐹 = ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) |
4 |
1 2 3
|
fnmptif |
⊢ 𝐹 Fn 𝐴 |
5 |
|
fndm |
⊢ ( 𝐹 Fn 𝐴 → dom 𝐹 = 𝐴 ) |
6 |
4 5
|
ax-mp |
⊢ dom 𝐹 = 𝐴 |