Metamath Proof Explorer
		
		
		
		Description:  Domain of the mapping operation.  (Contributed by Glauco Siliprandi, 21-Dec-2024)
		
			
				
					 | 
					 | 
					Ref | 
					Expression | 
				
					
						 | 
						Hypotheses | 
						dmmptif.1 | 
						⊢ Ⅎ 𝑥 𝐴  | 
					
					
						 | 
						 | 
						dmmptif.2 | 
						⊢ 𝐵  ∈  V  | 
					
					
						 | 
						 | 
						dmmptif.3 | 
						⊢ 𝐹  =  ( 𝑥  ∈  𝐴  ↦  𝐵 )  | 
					
				
					 | 
					Assertion | 
					dmmptif | 
					⊢  dom  𝐹  =  𝐴  | 
				
			
		
		
			
				Proof
				
					
						| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							dmmptif.1 | 
							⊢ Ⅎ 𝑥 𝐴  | 
						
						
							| 2 | 
							
								
							 | 
							dmmptif.2 | 
							⊢ 𝐵  ∈  V  | 
						
						
							| 3 | 
							
								
							 | 
							dmmptif.3 | 
							⊢ 𝐹  =  ( 𝑥  ∈  𝐴  ↦  𝐵 )  | 
						
						
							| 4 | 
							
								1 2 3
							 | 
							fnmptif | 
							⊢ 𝐹  Fn  𝐴  | 
						
						
							| 5 | 
							
								
							 | 
							fndm | 
							⊢ ( 𝐹  Fn  𝐴  →  dom  𝐹  =  𝐴 )  | 
						
						
							| 6 | 
							
								4 5
							 | 
							ax-mp | 
							⊢ dom  𝐹  =  𝐴  |