Metamath Proof Explorer


Theorem dmmptssf

Description: The domain of a mapping is a subset of its base class. (Contributed by Glauco Siliprandi, 23-Oct-2021)

Ref Expression
Hypotheses dmmptssf.1 𝑥 𝐴
dmmptssf.2 𝐹 = ( 𝑥𝐴𝐵 )
Assertion dmmptssf dom 𝐹𝐴

Proof

Step Hyp Ref Expression
1 dmmptssf.1 𝑥 𝐴
2 dmmptssf.2 𝐹 = ( 𝑥𝐴𝐵 )
3 2 dmmpt dom 𝐹 = { 𝑥𝐴𝐵 ∈ V }
4 1 ssrab2f { 𝑥𝐴𝐵 ∈ V } ⊆ 𝐴
5 3 4 eqsstri dom 𝐹𝐴