Metamath Proof Explorer
Description: The domain of a mapping is a subset of its base class. (Contributed by Glauco Siliprandi, 23-Oct-2021)
|
|
Ref |
Expression |
|
Hypotheses |
dmmptssf.1 |
⊢ Ⅎ 𝑥 𝐴 |
|
|
dmmptssf.2 |
⊢ 𝐹 = ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) |
|
Assertion |
dmmptssf |
⊢ dom 𝐹 ⊆ 𝐴 |
Proof
Step |
Hyp |
Ref |
Expression |
1 |
|
dmmptssf.1 |
⊢ Ⅎ 𝑥 𝐴 |
2 |
|
dmmptssf.2 |
⊢ 𝐹 = ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) |
3 |
2
|
dmmpt |
⊢ dom 𝐹 = { 𝑥 ∈ 𝐴 ∣ 𝐵 ∈ V } |
4 |
1
|
ssrab2f |
⊢ { 𝑥 ∈ 𝐴 ∣ 𝐵 ∈ V } ⊆ 𝐴 |
5 |
3 4
|
eqsstri |
⊢ dom 𝐹 ⊆ 𝐴 |