Metamath Proof Explorer


Theorem dmmulsr

Description: Domain of multiplication on signed reals. (Contributed by NM, 25-Aug-1995) (New usage is discouraged.)

Ref Expression
Assertion dmmulsr dom ·R = ( R × R )

Proof

Step Hyp Ref Expression
1 df-mr ·R = { ⟨ ⟨ 𝑥 , 𝑦 ⟩ , 𝑧 ⟩ ∣ ( ( 𝑥R𝑦R ) ∧ ∃ 𝑤𝑣𝑢𝑓 ( ( 𝑥 = [ ⟨ 𝑤 , 𝑣 ⟩ ] ~R𝑦 = [ ⟨ 𝑢 , 𝑓 ⟩ ] ~R ) ∧ 𝑧 = [ ⟨ ( ( 𝑤 ·P 𝑢 ) +P ( 𝑣 ·P 𝑓 ) ) , ( ( 𝑤 ·P 𝑓 ) +P ( 𝑣 ·P 𝑢 ) ) ⟩ ] ~R ) ) }
2 1 dmeqi dom ·R = dom { ⟨ ⟨ 𝑥 , 𝑦 ⟩ , 𝑧 ⟩ ∣ ( ( 𝑥R𝑦R ) ∧ ∃ 𝑤𝑣𝑢𝑓 ( ( 𝑥 = [ ⟨ 𝑤 , 𝑣 ⟩ ] ~R𝑦 = [ ⟨ 𝑢 , 𝑓 ⟩ ] ~R ) ∧ 𝑧 = [ ⟨ ( ( 𝑤 ·P 𝑢 ) +P ( 𝑣 ·P 𝑓 ) ) , ( ( 𝑤 ·P 𝑓 ) +P ( 𝑣 ·P 𝑢 ) ) ⟩ ] ~R ) ) }
3 dmoprabss dom { ⟨ ⟨ 𝑥 , 𝑦 ⟩ , 𝑧 ⟩ ∣ ( ( 𝑥R𝑦R ) ∧ ∃ 𝑤𝑣𝑢𝑓 ( ( 𝑥 = [ ⟨ 𝑤 , 𝑣 ⟩ ] ~R𝑦 = [ ⟨ 𝑢 , 𝑓 ⟩ ] ~R ) ∧ 𝑧 = [ ⟨ ( ( 𝑤 ·P 𝑢 ) +P ( 𝑣 ·P 𝑓 ) ) , ( ( 𝑤 ·P 𝑓 ) +P ( 𝑣 ·P 𝑢 ) ) ⟩ ] ~R ) ) } ⊆ ( R × R )
4 2 3 eqsstri dom ·R ⊆ ( R × R )
5 0nsr ¬ ∅ ∈ R
6 mulclsr ( ( 𝑥R𝑦R ) → ( 𝑥 ·R 𝑦 ) ∈ R )
7 5 6 oprssdm ( R × R ) ⊆ dom ·R
8 4 7 eqssi dom ·R = ( R × R )