Metamath Proof Explorer


Theorem dmmzp

Description: mzPoly is defined for all index sets which are sets. This is used with elfvdm to eliminate sethood antecedents. (Contributed by Stefan O'Rear, 4-Oct-2014)

Ref Expression
Assertion dmmzp dom mzPoly = V

Proof

Step Hyp Ref Expression
1 df-mzp mzPoly = ( 𝑣 ∈ V ↦ ( mzPolyCld ‘ 𝑣 ) )
2 1 dmeqi dom mzPoly = dom ( 𝑣 ∈ V ↦ ( mzPolyCld ‘ 𝑣 ) )
3 dmmptg ( ∀ 𝑣 ∈ V ( mzPolyCld ‘ 𝑣 ) ∈ V → dom ( 𝑣 ∈ V ↦ ( mzPolyCld ‘ 𝑣 ) ) = V )
4 mzpcln0 ( 𝑣 ∈ V → ( mzPolyCld ‘ 𝑣 ) ≠ ∅ )
5 intex ( ( mzPolyCld ‘ 𝑣 ) ≠ ∅ ↔ ( mzPolyCld ‘ 𝑣 ) ∈ V )
6 4 5 sylib ( 𝑣 ∈ V → ( mzPolyCld ‘ 𝑣 ) ∈ V )
7 3 6 mprg dom ( 𝑣 ∈ V ↦ ( mzPolyCld ‘ 𝑣 ) ) = V
8 2 7 eqtri dom mzPoly = V