Description: mzPoly is defined for all index sets which are sets. This is used with elfvdm to eliminate sethood antecedents. (Contributed by Stefan O'Rear, 4-Oct-2014)
Ref | Expression | ||
---|---|---|---|
Assertion | dmmzp | ⊢ dom mzPoly = V |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-mzp | ⊢ mzPoly = ( 𝑣 ∈ V ↦ ∩ ( mzPolyCld ‘ 𝑣 ) ) | |
2 | 1 | dmeqi | ⊢ dom mzPoly = dom ( 𝑣 ∈ V ↦ ∩ ( mzPolyCld ‘ 𝑣 ) ) |
3 | dmmptg | ⊢ ( ∀ 𝑣 ∈ V ∩ ( mzPolyCld ‘ 𝑣 ) ∈ V → dom ( 𝑣 ∈ V ↦ ∩ ( mzPolyCld ‘ 𝑣 ) ) = V ) | |
4 | mzpcln0 | ⊢ ( 𝑣 ∈ V → ( mzPolyCld ‘ 𝑣 ) ≠ ∅ ) | |
5 | intex | ⊢ ( ( mzPolyCld ‘ 𝑣 ) ≠ ∅ ↔ ∩ ( mzPolyCld ‘ 𝑣 ) ∈ V ) | |
6 | 4 5 | sylib | ⊢ ( 𝑣 ∈ V → ∩ ( mzPolyCld ‘ 𝑣 ) ∈ V ) |
7 | 3 6 | mprg | ⊢ dom ( 𝑣 ∈ V ↦ ∩ ( mzPolyCld ‘ 𝑣 ) ) = V |
8 | 2 7 | eqtri | ⊢ dom mzPoly = V |