| Step |
Hyp |
Ref |
Expression |
| 1 |
|
df-ral |
⊢ ( ∀ 𝑥 ∈ 𝐴 ∃ 𝑦 𝜑 ↔ ∀ 𝑥 ( 𝑥 ∈ 𝐴 → ∃ 𝑦 𝜑 ) ) |
| 2 |
|
pm4.71 |
⊢ ( ( 𝑥 ∈ 𝐴 → ∃ 𝑦 𝜑 ) ↔ ( 𝑥 ∈ 𝐴 ↔ ( 𝑥 ∈ 𝐴 ∧ ∃ 𝑦 𝜑 ) ) ) |
| 3 |
2
|
albii |
⊢ ( ∀ 𝑥 ( 𝑥 ∈ 𝐴 → ∃ 𝑦 𝜑 ) ↔ ∀ 𝑥 ( 𝑥 ∈ 𝐴 ↔ ( 𝑥 ∈ 𝐴 ∧ ∃ 𝑦 𝜑 ) ) ) |
| 4 |
|
dmopab |
⊢ dom { 〈 𝑥 , 𝑦 〉 ∣ ( 𝑥 ∈ 𝐴 ∧ 𝜑 ) } = { 𝑥 ∣ ∃ 𝑦 ( 𝑥 ∈ 𝐴 ∧ 𝜑 ) } |
| 5 |
|
19.42v |
⊢ ( ∃ 𝑦 ( 𝑥 ∈ 𝐴 ∧ 𝜑 ) ↔ ( 𝑥 ∈ 𝐴 ∧ ∃ 𝑦 𝜑 ) ) |
| 6 |
5
|
abbii |
⊢ { 𝑥 ∣ ∃ 𝑦 ( 𝑥 ∈ 𝐴 ∧ 𝜑 ) } = { 𝑥 ∣ ( 𝑥 ∈ 𝐴 ∧ ∃ 𝑦 𝜑 ) } |
| 7 |
4 6
|
eqtri |
⊢ dom { 〈 𝑥 , 𝑦 〉 ∣ ( 𝑥 ∈ 𝐴 ∧ 𝜑 ) } = { 𝑥 ∣ ( 𝑥 ∈ 𝐴 ∧ ∃ 𝑦 𝜑 ) } |
| 8 |
7
|
eqeq1i |
⊢ ( dom { 〈 𝑥 , 𝑦 〉 ∣ ( 𝑥 ∈ 𝐴 ∧ 𝜑 ) } = 𝐴 ↔ { 𝑥 ∣ ( 𝑥 ∈ 𝐴 ∧ ∃ 𝑦 𝜑 ) } = 𝐴 ) |
| 9 |
|
eqcom |
⊢ ( 𝐴 = { 𝑥 ∣ ( 𝑥 ∈ 𝐴 ∧ ∃ 𝑦 𝜑 ) } ↔ { 𝑥 ∣ ( 𝑥 ∈ 𝐴 ∧ ∃ 𝑦 𝜑 ) } = 𝐴 ) |
| 10 |
|
eqabb |
⊢ ( 𝐴 = { 𝑥 ∣ ( 𝑥 ∈ 𝐴 ∧ ∃ 𝑦 𝜑 ) } ↔ ∀ 𝑥 ( 𝑥 ∈ 𝐴 ↔ ( 𝑥 ∈ 𝐴 ∧ ∃ 𝑦 𝜑 ) ) ) |
| 11 |
8 9 10
|
3bitr2ri |
⊢ ( ∀ 𝑥 ( 𝑥 ∈ 𝐴 ↔ ( 𝑥 ∈ 𝐴 ∧ ∃ 𝑦 𝜑 ) ) ↔ dom { 〈 𝑥 , 𝑦 〉 ∣ ( 𝑥 ∈ 𝐴 ∧ 𝜑 ) } = 𝐴 ) |
| 12 |
1 3 11
|
3bitri |
⊢ ( ∀ 𝑥 ∈ 𝐴 ∃ 𝑦 𝜑 ↔ dom { 〈 𝑥 , 𝑦 〉 ∣ ( 𝑥 ∈ 𝐴 ∧ 𝜑 ) } = 𝐴 ) |