| Step |
Hyp |
Ref |
Expression |
| 1 |
|
rexcom4 |
⊢ ( ∃ 𝑣 ∈ 𝑈 ∃ 𝑦 ( 𝑧 = 𝐴 ∧ 𝑦 = 𝐵 ) ↔ ∃ 𝑦 ∃ 𝑣 ∈ 𝑈 ( 𝑧 = 𝐴 ∧ 𝑦 = 𝐵 ) ) |
| 2 |
|
rexcom4 |
⊢ ( ∃ 𝑖 ∈ 𝐼 ∃ 𝑦 ( 𝑧 = 𝐶 ∧ 𝑦 = 𝐷 ) ↔ ∃ 𝑦 ∃ 𝑖 ∈ 𝐼 ( 𝑧 = 𝐶 ∧ 𝑦 = 𝐷 ) ) |
| 3 |
1 2
|
orbi12i |
⊢ ( ( ∃ 𝑣 ∈ 𝑈 ∃ 𝑦 ( 𝑧 = 𝐴 ∧ 𝑦 = 𝐵 ) ∨ ∃ 𝑖 ∈ 𝐼 ∃ 𝑦 ( 𝑧 = 𝐶 ∧ 𝑦 = 𝐷 ) ) ↔ ( ∃ 𝑦 ∃ 𝑣 ∈ 𝑈 ( 𝑧 = 𝐴 ∧ 𝑦 = 𝐵 ) ∨ ∃ 𝑦 ∃ 𝑖 ∈ 𝐼 ( 𝑧 = 𝐶 ∧ 𝑦 = 𝐷 ) ) ) |
| 4 |
|
19.43 |
⊢ ( ∃ 𝑦 ( ∃ 𝑣 ∈ 𝑈 ( 𝑧 = 𝐴 ∧ 𝑦 = 𝐵 ) ∨ ∃ 𝑖 ∈ 𝐼 ( 𝑧 = 𝐶 ∧ 𝑦 = 𝐷 ) ) ↔ ( ∃ 𝑦 ∃ 𝑣 ∈ 𝑈 ( 𝑧 = 𝐴 ∧ 𝑦 = 𝐵 ) ∨ ∃ 𝑦 ∃ 𝑖 ∈ 𝐼 ( 𝑧 = 𝐶 ∧ 𝑦 = 𝐷 ) ) ) |
| 5 |
3 4
|
bitr4i |
⊢ ( ( ∃ 𝑣 ∈ 𝑈 ∃ 𝑦 ( 𝑧 = 𝐴 ∧ 𝑦 = 𝐵 ) ∨ ∃ 𝑖 ∈ 𝐼 ∃ 𝑦 ( 𝑧 = 𝐶 ∧ 𝑦 = 𝐷 ) ) ↔ ∃ 𝑦 ( ∃ 𝑣 ∈ 𝑈 ( 𝑧 = 𝐴 ∧ 𝑦 = 𝐵 ) ∨ ∃ 𝑖 ∈ 𝐼 ( 𝑧 = 𝐶 ∧ 𝑦 = 𝐷 ) ) ) |
| 6 |
5
|
rexbii |
⊢ ( ∃ 𝑢 ∈ ( 𝑈 ∖ 𝑆 ) ( ∃ 𝑣 ∈ 𝑈 ∃ 𝑦 ( 𝑧 = 𝐴 ∧ 𝑦 = 𝐵 ) ∨ ∃ 𝑖 ∈ 𝐼 ∃ 𝑦 ( 𝑧 = 𝐶 ∧ 𝑦 = 𝐷 ) ) ↔ ∃ 𝑢 ∈ ( 𝑈 ∖ 𝑆 ) ∃ 𝑦 ( ∃ 𝑣 ∈ 𝑈 ( 𝑧 = 𝐴 ∧ 𝑦 = 𝐵 ) ∨ ∃ 𝑖 ∈ 𝐼 ( 𝑧 = 𝐶 ∧ 𝑦 = 𝐷 ) ) ) |
| 7 |
|
rexcom4 |
⊢ ( ∃ 𝑢 ∈ ( 𝑈 ∖ 𝑆 ) ∃ 𝑦 ( ∃ 𝑣 ∈ 𝑈 ( 𝑧 = 𝐴 ∧ 𝑦 = 𝐵 ) ∨ ∃ 𝑖 ∈ 𝐼 ( 𝑧 = 𝐶 ∧ 𝑦 = 𝐷 ) ) ↔ ∃ 𝑦 ∃ 𝑢 ∈ ( 𝑈 ∖ 𝑆 ) ( ∃ 𝑣 ∈ 𝑈 ( 𝑧 = 𝐴 ∧ 𝑦 = 𝐵 ) ∨ ∃ 𝑖 ∈ 𝐼 ( 𝑧 = 𝐶 ∧ 𝑦 = 𝐷 ) ) ) |
| 8 |
6 7
|
bitri |
⊢ ( ∃ 𝑢 ∈ ( 𝑈 ∖ 𝑆 ) ( ∃ 𝑣 ∈ 𝑈 ∃ 𝑦 ( 𝑧 = 𝐴 ∧ 𝑦 = 𝐵 ) ∨ ∃ 𝑖 ∈ 𝐼 ∃ 𝑦 ( 𝑧 = 𝐶 ∧ 𝑦 = 𝐷 ) ) ↔ ∃ 𝑦 ∃ 𝑢 ∈ ( 𝑈 ∖ 𝑆 ) ( ∃ 𝑣 ∈ 𝑈 ( 𝑧 = 𝐴 ∧ 𝑦 = 𝐵 ) ∨ ∃ 𝑖 ∈ 𝐼 ( 𝑧 = 𝐶 ∧ 𝑦 = 𝐷 ) ) ) |
| 9 |
|
rexcom4 |
⊢ ( ∃ 𝑣 ∈ ( 𝑈 ∖ 𝑆 ) ∃ 𝑦 ( 𝑧 = 𝐴 ∧ 𝑦 = 𝐵 ) ↔ ∃ 𝑦 ∃ 𝑣 ∈ ( 𝑈 ∖ 𝑆 ) ( 𝑧 = 𝐴 ∧ 𝑦 = 𝐵 ) ) |
| 10 |
9
|
rexbii |
⊢ ( ∃ 𝑢 ∈ 𝑆 ∃ 𝑣 ∈ ( 𝑈 ∖ 𝑆 ) ∃ 𝑦 ( 𝑧 = 𝐴 ∧ 𝑦 = 𝐵 ) ↔ ∃ 𝑢 ∈ 𝑆 ∃ 𝑦 ∃ 𝑣 ∈ ( 𝑈 ∖ 𝑆 ) ( 𝑧 = 𝐴 ∧ 𝑦 = 𝐵 ) ) |
| 11 |
|
rexcom4 |
⊢ ( ∃ 𝑢 ∈ 𝑆 ∃ 𝑦 ∃ 𝑣 ∈ ( 𝑈 ∖ 𝑆 ) ( 𝑧 = 𝐴 ∧ 𝑦 = 𝐵 ) ↔ ∃ 𝑦 ∃ 𝑢 ∈ 𝑆 ∃ 𝑣 ∈ ( 𝑈 ∖ 𝑆 ) ( 𝑧 = 𝐴 ∧ 𝑦 = 𝐵 ) ) |
| 12 |
10 11
|
bitri |
⊢ ( ∃ 𝑢 ∈ 𝑆 ∃ 𝑣 ∈ ( 𝑈 ∖ 𝑆 ) ∃ 𝑦 ( 𝑧 = 𝐴 ∧ 𝑦 = 𝐵 ) ↔ ∃ 𝑦 ∃ 𝑢 ∈ 𝑆 ∃ 𝑣 ∈ ( 𝑈 ∖ 𝑆 ) ( 𝑧 = 𝐴 ∧ 𝑦 = 𝐵 ) ) |
| 13 |
8 12
|
orbi12i |
⊢ ( ( ∃ 𝑢 ∈ ( 𝑈 ∖ 𝑆 ) ( ∃ 𝑣 ∈ 𝑈 ∃ 𝑦 ( 𝑧 = 𝐴 ∧ 𝑦 = 𝐵 ) ∨ ∃ 𝑖 ∈ 𝐼 ∃ 𝑦 ( 𝑧 = 𝐶 ∧ 𝑦 = 𝐷 ) ) ∨ ∃ 𝑢 ∈ 𝑆 ∃ 𝑣 ∈ ( 𝑈 ∖ 𝑆 ) ∃ 𝑦 ( 𝑧 = 𝐴 ∧ 𝑦 = 𝐵 ) ) ↔ ( ∃ 𝑦 ∃ 𝑢 ∈ ( 𝑈 ∖ 𝑆 ) ( ∃ 𝑣 ∈ 𝑈 ( 𝑧 = 𝐴 ∧ 𝑦 = 𝐵 ) ∨ ∃ 𝑖 ∈ 𝐼 ( 𝑧 = 𝐶 ∧ 𝑦 = 𝐷 ) ) ∨ ∃ 𝑦 ∃ 𝑢 ∈ 𝑆 ∃ 𝑣 ∈ ( 𝑈 ∖ 𝑆 ) ( 𝑧 = 𝐴 ∧ 𝑦 = 𝐵 ) ) ) |
| 14 |
|
19.43 |
⊢ ( ∃ 𝑦 ( ∃ 𝑢 ∈ ( 𝑈 ∖ 𝑆 ) ( ∃ 𝑣 ∈ 𝑈 ( 𝑧 = 𝐴 ∧ 𝑦 = 𝐵 ) ∨ ∃ 𝑖 ∈ 𝐼 ( 𝑧 = 𝐶 ∧ 𝑦 = 𝐷 ) ) ∨ ∃ 𝑢 ∈ 𝑆 ∃ 𝑣 ∈ ( 𝑈 ∖ 𝑆 ) ( 𝑧 = 𝐴 ∧ 𝑦 = 𝐵 ) ) ↔ ( ∃ 𝑦 ∃ 𝑢 ∈ ( 𝑈 ∖ 𝑆 ) ( ∃ 𝑣 ∈ 𝑈 ( 𝑧 = 𝐴 ∧ 𝑦 = 𝐵 ) ∨ ∃ 𝑖 ∈ 𝐼 ( 𝑧 = 𝐶 ∧ 𝑦 = 𝐷 ) ) ∨ ∃ 𝑦 ∃ 𝑢 ∈ 𝑆 ∃ 𝑣 ∈ ( 𝑈 ∖ 𝑆 ) ( 𝑧 = 𝐴 ∧ 𝑦 = 𝐵 ) ) ) |
| 15 |
13 14
|
bitr4i |
⊢ ( ( ∃ 𝑢 ∈ ( 𝑈 ∖ 𝑆 ) ( ∃ 𝑣 ∈ 𝑈 ∃ 𝑦 ( 𝑧 = 𝐴 ∧ 𝑦 = 𝐵 ) ∨ ∃ 𝑖 ∈ 𝐼 ∃ 𝑦 ( 𝑧 = 𝐶 ∧ 𝑦 = 𝐷 ) ) ∨ ∃ 𝑢 ∈ 𝑆 ∃ 𝑣 ∈ ( 𝑈 ∖ 𝑆 ) ∃ 𝑦 ( 𝑧 = 𝐴 ∧ 𝑦 = 𝐵 ) ) ↔ ∃ 𝑦 ( ∃ 𝑢 ∈ ( 𝑈 ∖ 𝑆 ) ( ∃ 𝑣 ∈ 𝑈 ( 𝑧 = 𝐴 ∧ 𝑦 = 𝐵 ) ∨ ∃ 𝑖 ∈ 𝐼 ( 𝑧 = 𝐶 ∧ 𝑦 = 𝐷 ) ) ∨ ∃ 𝑢 ∈ 𝑆 ∃ 𝑣 ∈ ( 𝑈 ∖ 𝑆 ) ( 𝑧 = 𝐴 ∧ 𝑦 = 𝐵 ) ) ) |
| 16 |
|
difssd |
⊢ ( 𝑆 ⊆ 𝑈 → ( 𝑈 ∖ 𝑆 ) ⊆ 𝑈 ) |
| 17 |
|
ssralv |
⊢ ( ( 𝑈 ∖ 𝑆 ) ⊆ 𝑈 → ( ∀ 𝑢 ∈ 𝑈 ( ∀ 𝑣 ∈ 𝑈 𝐵 ∈ 𝑋 ∧ ∀ 𝑖 ∈ 𝐼 𝐷 ∈ 𝑊 ) → ∀ 𝑢 ∈ ( 𝑈 ∖ 𝑆 ) ( ∀ 𝑣 ∈ 𝑈 𝐵 ∈ 𝑋 ∧ ∀ 𝑖 ∈ 𝐼 𝐷 ∈ 𝑊 ) ) ) |
| 18 |
16 17
|
syl |
⊢ ( 𝑆 ⊆ 𝑈 → ( ∀ 𝑢 ∈ 𝑈 ( ∀ 𝑣 ∈ 𝑈 𝐵 ∈ 𝑋 ∧ ∀ 𝑖 ∈ 𝐼 𝐷 ∈ 𝑊 ) → ∀ 𝑢 ∈ ( 𝑈 ∖ 𝑆 ) ( ∀ 𝑣 ∈ 𝑈 𝐵 ∈ 𝑋 ∧ ∀ 𝑖 ∈ 𝐼 𝐷 ∈ 𝑊 ) ) ) |
| 19 |
18
|
impcom |
⊢ ( ( ∀ 𝑢 ∈ 𝑈 ( ∀ 𝑣 ∈ 𝑈 𝐵 ∈ 𝑋 ∧ ∀ 𝑖 ∈ 𝐼 𝐷 ∈ 𝑊 ) ∧ 𝑆 ⊆ 𝑈 ) → ∀ 𝑢 ∈ ( 𝑈 ∖ 𝑆 ) ( ∀ 𝑣 ∈ 𝑈 𝐵 ∈ 𝑋 ∧ ∀ 𝑖 ∈ 𝐼 𝐷 ∈ 𝑊 ) ) |
| 20 |
|
simpl |
⊢ ( ( 𝑧 = 𝐴 ∧ 𝑦 = 𝐵 ) → 𝑧 = 𝐴 ) |
| 21 |
20
|
exlimiv |
⊢ ( ∃ 𝑦 ( 𝑧 = 𝐴 ∧ 𝑦 = 𝐵 ) → 𝑧 = 𝐴 ) |
| 22 |
|
elisset |
⊢ ( 𝐵 ∈ 𝑋 → ∃ 𝑦 𝑦 = 𝐵 ) |
| 23 |
|
ibar |
⊢ ( 𝑧 = 𝐴 → ( 𝑦 = 𝐵 ↔ ( 𝑧 = 𝐴 ∧ 𝑦 = 𝐵 ) ) ) |
| 24 |
23
|
bicomd |
⊢ ( 𝑧 = 𝐴 → ( ( 𝑧 = 𝐴 ∧ 𝑦 = 𝐵 ) ↔ 𝑦 = 𝐵 ) ) |
| 25 |
24
|
exbidv |
⊢ ( 𝑧 = 𝐴 → ( ∃ 𝑦 ( 𝑧 = 𝐴 ∧ 𝑦 = 𝐵 ) ↔ ∃ 𝑦 𝑦 = 𝐵 ) ) |
| 26 |
22 25
|
syl5ibrcom |
⊢ ( 𝐵 ∈ 𝑋 → ( 𝑧 = 𝐴 → ∃ 𝑦 ( 𝑧 = 𝐴 ∧ 𝑦 = 𝐵 ) ) ) |
| 27 |
21 26
|
impbid2 |
⊢ ( 𝐵 ∈ 𝑋 → ( ∃ 𝑦 ( 𝑧 = 𝐴 ∧ 𝑦 = 𝐵 ) ↔ 𝑧 = 𝐴 ) ) |
| 28 |
27
|
ralrexbid |
⊢ ( ∀ 𝑣 ∈ 𝑈 𝐵 ∈ 𝑋 → ( ∃ 𝑣 ∈ 𝑈 ∃ 𝑦 ( 𝑧 = 𝐴 ∧ 𝑦 = 𝐵 ) ↔ ∃ 𝑣 ∈ 𝑈 𝑧 = 𝐴 ) ) |
| 29 |
28
|
adantr |
⊢ ( ( ∀ 𝑣 ∈ 𝑈 𝐵 ∈ 𝑋 ∧ ∀ 𝑖 ∈ 𝐼 𝐷 ∈ 𝑊 ) → ( ∃ 𝑣 ∈ 𝑈 ∃ 𝑦 ( 𝑧 = 𝐴 ∧ 𝑦 = 𝐵 ) ↔ ∃ 𝑣 ∈ 𝑈 𝑧 = 𝐴 ) ) |
| 30 |
|
simpl |
⊢ ( ( 𝑧 = 𝐶 ∧ 𝑦 = 𝐷 ) → 𝑧 = 𝐶 ) |
| 31 |
30
|
exlimiv |
⊢ ( ∃ 𝑦 ( 𝑧 = 𝐶 ∧ 𝑦 = 𝐷 ) → 𝑧 = 𝐶 ) |
| 32 |
|
elisset |
⊢ ( 𝐷 ∈ 𝑊 → ∃ 𝑦 𝑦 = 𝐷 ) |
| 33 |
|
ibar |
⊢ ( 𝑧 = 𝐶 → ( 𝑦 = 𝐷 ↔ ( 𝑧 = 𝐶 ∧ 𝑦 = 𝐷 ) ) ) |
| 34 |
33
|
bicomd |
⊢ ( 𝑧 = 𝐶 → ( ( 𝑧 = 𝐶 ∧ 𝑦 = 𝐷 ) ↔ 𝑦 = 𝐷 ) ) |
| 35 |
34
|
exbidv |
⊢ ( 𝑧 = 𝐶 → ( ∃ 𝑦 ( 𝑧 = 𝐶 ∧ 𝑦 = 𝐷 ) ↔ ∃ 𝑦 𝑦 = 𝐷 ) ) |
| 36 |
32 35
|
syl5ibrcom |
⊢ ( 𝐷 ∈ 𝑊 → ( 𝑧 = 𝐶 → ∃ 𝑦 ( 𝑧 = 𝐶 ∧ 𝑦 = 𝐷 ) ) ) |
| 37 |
31 36
|
impbid2 |
⊢ ( 𝐷 ∈ 𝑊 → ( ∃ 𝑦 ( 𝑧 = 𝐶 ∧ 𝑦 = 𝐷 ) ↔ 𝑧 = 𝐶 ) ) |
| 38 |
37
|
ralrexbid |
⊢ ( ∀ 𝑖 ∈ 𝐼 𝐷 ∈ 𝑊 → ( ∃ 𝑖 ∈ 𝐼 ∃ 𝑦 ( 𝑧 = 𝐶 ∧ 𝑦 = 𝐷 ) ↔ ∃ 𝑖 ∈ 𝐼 𝑧 = 𝐶 ) ) |
| 39 |
38
|
adantl |
⊢ ( ( ∀ 𝑣 ∈ 𝑈 𝐵 ∈ 𝑋 ∧ ∀ 𝑖 ∈ 𝐼 𝐷 ∈ 𝑊 ) → ( ∃ 𝑖 ∈ 𝐼 ∃ 𝑦 ( 𝑧 = 𝐶 ∧ 𝑦 = 𝐷 ) ↔ ∃ 𝑖 ∈ 𝐼 𝑧 = 𝐶 ) ) |
| 40 |
29 39
|
orbi12d |
⊢ ( ( ∀ 𝑣 ∈ 𝑈 𝐵 ∈ 𝑋 ∧ ∀ 𝑖 ∈ 𝐼 𝐷 ∈ 𝑊 ) → ( ( ∃ 𝑣 ∈ 𝑈 ∃ 𝑦 ( 𝑧 = 𝐴 ∧ 𝑦 = 𝐵 ) ∨ ∃ 𝑖 ∈ 𝐼 ∃ 𝑦 ( 𝑧 = 𝐶 ∧ 𝑦 = 𝐷 ) ) ↔ ( ∃ 𝑣 ∈ 𝑈 𝑧 = 𝐴 ∨ ∃ 𝑖 ∈ 𝐼 𝑧 = 𝐶 ) ) ) |
| 41 |
40
|
ralrexbid |
⊢ ( ∀ 𝑢 ∈ ( 𝑈 ∖ 𝑆 ) ( ∀ 𝑣 ∈ 𝑈 𝐵 ∈ 𝑋 ∧ ∀ 𝑖 ∈ 𝐼 𝐷 ∈ 𝑊 ) → ( ∃ 𝑢 ∈ ( 𝑈 ∖ 𝑆 ) ( ∃ 𝑣 ∈ 𝑈 ∃ 𝑦 ( 𝑧 = 𝐴 ∧ 𝑦 = 𝐵 ) ∨ ∃ 𝑖 ∈ 𝐼 ∃ 𝑦 ( 𝑧 = 𝐶 ∧ 𝑦 = 𝐷 ) ) ↔ ∃ 𝑢 ∈ ( 𝑈 ∖ 𝑆 ) ( ∃ 𝑣 ∈ 𝑈 𝑧 = 𝐴 ∨ ∃ 𝑖 ∈ 𝐼 𝑧 = 𝐶 ) ) ) |
| 42 |
19 41
|
syl |
⊢ ( ( ∀ 𝑢 ∈ 𝑈 ( ∀ 𝑣 ∈ 𝑈 𝐵 ∈ 𝑋 ∧ ∀ 𝑖 ∈ 𝐼 𝐷 ∈ 𝑊 ) ∧ 𝑆 ⊆ 𝑈 ) → ( ∃ 𝑢 ∈ ( 𝑈 ∖ 𝑆 ) ( ∃ 𝑣 ∈ 𝑈 ∃ 𝑦 ( 𝑧 = 𝐴 ∧ 𝑦 = 𝐵 ) ∨ ∃ 𝑖 ∈ 𝐼 ∃ 𝑦 ( 𝑧 = 𝐶 ∧ 𝑦 = 𝐷 ) ) ↔ ∃ 𝑢 ∈ ( 𝑈 ∖ 𝑆 ) ( ∃ 𝑣 ∈ 𝑈 𝑧 = 𝐴 ∨ ∃ 𝑖 ∈ 𝐼 𝑧 = 𝐶 ) ) ) |
| 43 |
|
ssralv |
⊢ ( 𝑆 ⊆ 𝑈 → ( ∀ 𝑢 ∈ 𝑈 ( ∀ 𝑣 ∈ 𝑈 𝐵 ∈ 𝑋 ∧ ∀ 𝑖 ∈ 𝐼 𝐷 ∈ 𝑊 ) → ∀ 𝑢 ∈ 𝑆 ( ∀ 𝑣 ∈ 𝑈 𝐵 ∈ 𝑋 ∧ ∀ 𝑖 ∈ 𝐼 𝐷 ∈ 𝑊 ) ) ) |
| 44 |
|
ssralv |
⊢ ( ( 𝑈 ∖ 𝑆 ) ⊆ 𝑈 → ( ∀ 𝑣 ∈ 𝑈 𝐵 ∈ 𝑋 → ∀ 𝑣 ∈ ( 𝑈 ∖ 𝑆 ) 𝐵 ∈ 𝑋 ) ) |
| 45 |
16 44
|
syl |
⊢ ( 𝑆 ⊆ 𝑈 → ( ∀ 𝑣 ∈ 𝑈 𝐵 ∈ 𝑋 → ∀ 𝑣 ∈ ( 𝑈 ∖ 𝑆 ) 𝐵 ∈ 𝑋 ) ) |
| 46 |
45
|
adantrd |
⊢ ( 𝑆 ⊆ 𝑈 → ( ( ∀ 𝑣 ∈ 𝑈 𝐵 ∈ 𝑋 ∧ ∀ 𝑖 ∈ 𝐼 𝐷 ∈ 𝑊 ) → ∀ 𝑣 ∈ ( 𝑈 ∖ 𝑆 ) 𝐵 ∈ 𝑋 ) ) |
| 47 |
46
|
ralimdv |
⊢ ( 𝑆 ⊆ 𝑈 → ( ∀ 𝑢 ∈ 𝑆 ( ∀ 𝑣 ∈ 𝑈 𝐵 ∈ 𝑋 ∧ ∀ 𝑖 ∈ 𝐼 𝐷 ∈ 𝑊 ) → ∀ 𝑢 ∈ 𝑆 ∀ 𝑣 ∈ ( 𝑈 ∖ 𝑆 ) 𝐵 ∈ 𝑋 ) ) |
| 48 |
43 47
|
syld |
⊢ ( 𝑆 ⊆ 𝑈 → ( ∀ 𝑢 ∈ 𝑈 ( ∀ 𝑣 ∈ 𝑈 𝐵 ∈ 𝑋 ∧ ∀ 𝑖 ∈ 𝐼 𝐷 ∈ 𝑊 ) → ∀ 𝑢 ∈ 𝑆 ∀ 𝑣 ∈ ( 𝑈 ∖ 𝑆 ) 𝐵 ∈ 𝑋 ) ) |
| 49 |
48
|
impcom |
⊢ ( ( ∀ 𝑢 ∈ 𝑈 ( ∀ 𝑣 ∈ 𝑈 𝐵 ∈ 𝑋 ∧ ∀ 𝑖 ∈ 𝐼 𝐷 ∈ 𝑊 ) ∧ 𝑆 ⊆ 𝑈 ) → ∀ 𝑢 ∈ 𝑆 ∀ 𝑣 ∈ ( 𝑈 ∖ 𝑆 ) 𝐵 ∈ 𝑋 ) |
| 50 |
27
|
ralrexbid |
⊢ ( ∀ 𝑣 ∈ ( 𝑈 ∖ 𝑆 ) 𝐵 ∈ 𝑋 → ( ∃ 𝑣 ∈ ( 𝑈 ∖ 𝑆 ) ∃ 𝑦 ( 𝑧 = 𝐴 ∧ 𝑦 = 𝐵 ) ↔ ∃ 𝑣 ∈ ( 𝑈 ∖ 𝑆 ) 𝑧 = 𝐴 ) ) |
| 51 |
50
|
ralrexbid |
⊢ ( ∀ 𝑢 ∈ 𝑆 ∀ 𝑣 ∈ ( 𝑈 ∖ 𝑆 ) 𝐵 ∈ 𝑋 → ( ∃ 𝑢 ∈ 𝑆 ∃ 𝑣 ∈ ( 𝑈 ∖ 𝑆 ) ∃ 𝑦 ( 𝑧 = 𝐴 ∧ 𝑦 = 𝐵 ) ↔ ∃ 𝑢 ∈ 𝑆 ∃ 𝑣 ∈ ( 𝑈 ∖ 𝑆 ) 𝑧 = 𝐴 ) ) |
| 52 |
49 51
|
syl |
⊢ ( ( ∀ 𝑢 ∈ 𝑈 ( ∀ 𝑣 ∈ 𝑈 𝐵 ∈ 𝑋 ∧ ∀ 𝑖 ∈ 𝐼 𝐷 ∈ 𝑊 ) ∧ 𝑆 ⊆ 𝑈 ) → ( ∃ 𝑢 ∈ 𝑆 ∃ 𝑣 ∈ ( 𝑈 ∖ 𝑆 ) ∃ 𝑦 ( 𝑧 = 𝐴 ∧ 𝑦 = 𝐵 ) ↔ ∃ 𝑢 ∈ 𝑆 ∃ 𝑣 ∈ ( 𝑈 ∖ 𝑆 ) 𝑧 = 𝐴 ) ) |
| 53 |
42 52
|
orbi12d |
⊢ ( ( ∀ 𝑢 ∈ 𝑈 ( ∀ 𝑣 ∈ 𝑈 𝐵 ∈ 𝑋 ∧ ∀ 𝑖 ∈ 𝐼 𝐷 ∈ 𝑊 ) ∧ 𝑆 ⊆ 𝑈 ) → ( ( ∃ 𝑢 ∈ ( 𝑈 ∖ 𝑆 ) ( ∃ 𝑣 ∈ 𝑈 ∃ 𝑦 ( 𝑧 = 𝐴 ∧ 𝑦 = 𝐵 ) ∨ ∃ 𝑖 ∈ 𝐼 ∃ 𝑦 ( 𝑧 = 𝐶 ∧ 𝑦 = 𝐷 ) ) ∨ ∃ 𝑢 ∈ 𝑆 ∃ 𝑣 ∈ ( 𝑈 ∖ 𝑆 ) ∃ 𝑦 ( 𝑧 = 𝐴 ∧ 𝑦 = 𝐵 ) ) ↔ ( ∃ 𝑢 ∈ ( 𝑈 ∖ 𝑆 ) ( ∃ 𝑣 ∈ 𝑈 𝑧 = 𝐴 ∨ ∃ 𝑖 ∈ 𝐼 𝑧 = 𝐶 ) ∨ ∃ 𝑢 ∈ 𝑆 ∃ 𝑣 ∈ ( 𝑈 ∖ 𝑆 ) 𝑧 = 𝐴 ) ) ) |
| 54 |
15 53
|
bitr3id |
⊢ ( ( ∀ 𝑢 ∈ 𝑈 ( ∀ 𝑣 ∈ 𝑈 𝐵 ∈ 𝑋 ∧ ∀ 𝑖 ∈ 𝐼 𝐷 ∈ 𝑊 ) ∧ 𝑆 ⊆ 𝑈 ) → ( ∃ 𝑦 ( ∃ 𝑢 ∈ ( 𝑈 ∖ 𝑆 ) ( ∃ 𝑣 ∈ 𝑈 ( 𝑧 = 𝐴 ∧ 𝑦 = 𝐵 ) ∨ ∃ 𝑖 ∈ 𝐼 ( 𝑧 = 𝐶 ∧ 𝑦 = 𝐷 ) ) ∨ ∃ 𝑢 ∈ 𝑆 ∃ 𝑣 ∈ ( 𝑈 ∖ 𝑆 ) ( 𝑧 = 𝐴 ∧ 𝑦 = 𝐵 ) ) ↔ ( ∃ 𝑢 ∈ ( 𝑈 ∖ 𝑆 ) ( ∃ 𝑣 ∈ 𝑈 𝑧 = 𝐴 ∨ ∃ 𝑖 ∈ 𝐼 𝑧 = 𝐶 ) ∨ ∃ 𝑢 ∈ 𝑆 ∃ 𝑣 ∈ ( 𝑈 ∖ 𝑆 ) 𝑧 = 𝐴 ) ) ) |
| 55 |
|
eqeq1 |
⊢ ( 𝑥 = 𝑧 → ( 𝑥 = 𝐴 ↔ 𝑧 = 𝐴 ) ) |
| 56 |
55
|
anbi1d |
⊢ ( 𝑥 = 𝑧 → ( ( 𝑥 = 𝐴 ∧ 𝑦 = 𝐵 ) ↔ ( 𝑧 = 𝐴 ∧ 𝑦 = 𝐵 ) ) ) |
| 57 |
56
|
rexbidv |
⊢ ( 𝑥 = 𝑧 → ( ∃ 𝑣 ∈ 𝑈 ( 𝑥 = 𝐴 ∧ 𝑦 = 𝐵 ) ↔ ∃ 𝑣 ∈ 𝑈 ( 𝑧 = 𝐴 ∧ 𝑦 = 𝐵 ) ) ) |
| 58 |
|
eqeq1 |
⊢ ( 𝑥 = 𝑧 → ( 𝑥 = 𝐶 ↔ 𝑧 = 𝐶 ) ) |
| 59 |
58
|
anbi1d |
⊢ ( 𝑥 = 𝑧 → ( ( 𝑥 = 𝐶 ∧ 𝑦 = 𝐷 ) ↔ ( 𝑧 = 𝐶 ∧ 𝑦 = 𝐷 ) ) ) |
| 60 |
59
|
rexbidv |
⊢ ( 𝑥 = 𝑧 → ( ∃ 𝑖 ∈ 𝐼 ( 𝑥 = 𝐶 ∧ 𝑦 = 𝐷 ) ↔ ∃ 𝑖 ∈ 𝐼 ( 𝑧 = 𝐶 ∧ 𝑦 = 𝐷 ) ) ) |
| 61 |
57 60
|
orbi12d |
⊢ ( 𝑥 = 𝑧 → ( ( ∃ 𝑣 ∈ 𝑈 ( 𝑥 = 𝐴 ∧ 𝑦 = 𝐵 ) ∨ ∃ 𝑖 ∈ 𝐼 ( 𝑥 = 𝐶 ∧ 𝑦 = 𝐷 ) ) ↔ ( ∃ 𝑣 ∈ 𝑈 ( 𝑧 = 𝐴 ∧ 𝑦 = 𝐵 ) ∨ ∃ 𝑖 ∈ 𝐼 ( 𝑧 = 𝐶 ∧ 𝑦 = 𝐷 ) ) ) ) |
| 62 |
61
|
rexbidv |
⊢ ( 𝑥 = 𝑧 → ( ∃ 𝑢 ∈ ( 𝑈 ∖ 𝑆 ) ( ∃ 𝑣 ∈ 𝑈 ( 𝑥 = 𝐴 ∧ 𝑦 = 𝐵 ) ∨ ∃ 𝑖 ∈ 𝐼 ( 𝑥 = 𝐶 ∧ 𝑦 = 𝐷 ) ) ↔ ∃ 𝑢 ∈ ( 𝑈 ∖ 𝑆 ) ( ∃ 𝑣 ∈ 𝑈 ( 𝑧 = 𝐴 ∧ 𝑦 = 𝐵 ) ∨ ∃ 𝑖 ∈ 𝐼 ( 𝑧 = 𝐶 ∧ 𝑦 = 𝐷 ) ) ) ) |
| 63 |
56
|
2rexbidv |
⊢ ( 𝑥 = 𝑧 → ( ∃ 𝑢 ∈ 𝑆 ∃ 𝑣 ∈ ( 𝑈 ∖ 𝑆 ) ( 𝑥 = 𝐴 ∧ 𝑦 = 𝐵 ) ↔ ∃ 𝑢 ∈ 𝑆 ∃ 𝑣 ∈ ( 𝑈 ∖ 𝑆 ) ( 𝑧 = 𝐴 ∧ 𝑦 = 𝐵 ) ) ) |
| 64 |
62 63
|
orbi12d |
⊢ ( 𝑥 = 𝑧 → ( ( ∃ 𝑢 ∈ ( 𝑈 ∖ 𝑆 ) ( ∃ 𝑣 ∈ 𝑈 ( 𝑥 = 𝐴 ∧ 𝑦 = 𝐵 ) ∨ ∃ 𝑖 ∈ 𝐼 ( 𝑥 = 𝐶 ∧ 𝑦 = 𝐷 ) ) ∨ ∃ 𝑢 ∈ 𝑆 ∃ 𝑣 ∈ ( 𝑈 ∖ 𝑆 ) ( 𝑥 = 𝐴 ∧ 𝑦 = 𝐵 ) ) ↔ ( ∃ 𝑢 ∈ ( 𝑈 ∖ 𝑆 ) ( ∃ 𝑣 ∈ 𝑈 ( 𝑧 = 𝐴 ∧ 𝑦 = 𝐵 ) ∨ ∃ 𝑖 ∈ 𝐼 ( 𝑧 = 𝐶 ∧ 𝑦 = 𝐷 ) ) ∨ ∃ 𝑢 ∈ 𝑆 ∃ 𝑣 ∈ ( 𝑈 ∖ 𝑆 ) ( 𝑧 = 𝐴 ∧ 𝑦 = 𝐵 ) ) ) ) |
| 65 |
64
|
dmopabelb |
⊢ ( 𝑧 ∈ V → ( 𝑧 ∈ dom { 〈 𝑥 , 𝑦 〉 ∣ ( ∃ 𝑢 ∈ ( 𝑈 ∖ 𝑆 ) ( ∃ 𝑣 ∈ 𝑈 ( 𝑥 = 𝐴 ∧ 𝑦 = 𝐵 ) ∨ ∃ 𝑖 ∈ 𝐼 ( 𝑥 = 𝐶 ∧ 𝑦 = 𝐷 ) ) ∨ ∃ 𝑢 ∈ 𝑆 ∃ 𝑣 ∈ ( 𝑈 ∖ 𝑆 ) ( 𝑥 = 𝐴 ∧ 𝑦 = 𝐵 ) ) } ↔ ∃ 𝑦 ( ∃ 𝑢 ∈ ( 𝑈 ∖ 𝑆 ) ( ∃ 𝑣 ∈ 𝑈 ( 𝑧 = 𝐴 ∧ 𝑦 = 𝐵 ) ∨ ∃ 𝑖 ∈ 𝐼 ( 𝑧 = 𝐶 ∧ 𝑦 = 𝐷 ) ) ∨ ∃ 𝑢 ∈ 𝑆 ∃ 𝑣 ∈ ( 𝑈 ∖ 𝑆 ) ( 𝑧 = 𝐴 ∧ 𝑦 = 𝐵 ) ) ) ) |
| 66 |
65
|
elv |
⊢ ( 𝑧 ∈ dom { 〈 𝑥 , 𝑦 〉 ∣ ( ∃ 𝑢 ∈ ( 𝑈 ∖ 𝑆 ) ( ∃ 𝑣 ∈ 𝑈 ( 𝑥 = 𝐴 ∧ 𝑦 = 𝐵 ) ∨ ∃ 𝑖 ∈ 𝐼 ( 𝑥 = 𝐶 ∧ 𝑦 = 𝐷 ) ) ∨ ∃ 𝑢 ∈ 𝑆 ∃ 𝑣 ∈ ( 𝑈 ∖ 𝑆 ) ( 𝑥 = 𝐴 ∧ 𝑦 = 𝐵 ) ) } ↔ ∃ 𝑦 ( ∃ 𝑢 ∈ ( 𝑈 ∖ 𝑆 ) ( ∃ 𝑣 ∈ 𝑈 ( 𝑧 = 𝐴 ∧ 𝑦 = 𝐵 ) ∨ ∃ 𝑖 ∈ 𝐼 ( 𝑧 = 𝐶 ∧ 𝑦 = 𝐷 ) ) ∨ ∃ 𝑢 ∈ 𝑆 ∃ 𝑣 ∈ ( 𝑈 ∖ 𝑆 ) ( 𝑧 = 𝐴 ∧ 𝑦 = 𝐵 ) ) ) |
| 67 |
|
vex |
⊢ 𝑧 ∈ V |
| 68 |
55
|
rexbidv |
⊢ ( 𝑥 = 𝑧 → ( ∃ 𝑣 ∈ 𝑈 𝑥 = 𝐴 ↔ ∃ 𝑣 ∈ 𝑈 𝑧 = 𝐴 ) ) |
| 69 |
58
|
rexbidv |
⊢ ( 𝑥 = 𝑧 → ( ∃ 𝑖 ∈ 𝐼 𝑥 = 𝐶 ↔ ∃ 𝑖 ∈ 𝐼 𝑧 = 𝐶 ) ) |
| 70 |
68 69
|
orbi12d |
⊢ ( 𝑥 = 𝑧 → ( ( ∃ 𝑣 ∈ 𝑈 𝑥 = 𝐴 ∨ ∃ 𝑖 ∈ 𝐼 𝑥 = 𝐶 ) ↔ ( ∃ 𝑣 ∈ 𝑈 𝑧 = 𝐴 ∨ ∃ 𝑖 ∈ 𝐼 𝑧 = 𝐶 ) ) ) |
| 71 |
70
|
rexbidv |
⊢ ( 𝑥 = 𝑧 → ( ∃ 𝑢 ∈ ( 𝑈 ∖ 𝑆 ) ( ∃ 𝑣 ∈ 𝑈 𝑥 = 𝐴 ∨ ∃ 𝑖 ∈ 𝐼 𝑥 = 𝐶 ) ↔ ∃ 𝑢 ∈ ( 𝑈 ∖ 𝑆 ) ( ∃ 𝑣 ∈ 𝑈 𝑧 = 𝐴 ∨ ∃ 𝑖 ∈ 𝐼 𝑧 = 𝐶 ) ) ) |
| 72 |
55
|
2rexbidv |
⊢ ( 𝑥 = 𝑧 → ( ∃ 𝑢 ∈ 𝑆 ∃ 𝑣 ∈ ( 𝑈 ∖ 𝑆 ) 𝑥 = 𝐴 ↔ ∃ 𝑢 ∈ 𝑆 ∃ 𝑣 ∈ ( 𝑈 ∖ 𝑆 ) 𝑧 = 𝐴 ) ) |
| 73 |
71 72
|
orbi12d |
⊢ ( 𝑥 = 𝑧 → ( ( ∃ 𝑢 ∈ ( 𝑈 ∖ 𝑆 ) ( ∃ 𝑣 ∈ 𝑈 𝑥 = 𝐴 ∨ ∃ 𝑖 ∈ 𝐼 𝑥 = 𝐶 ) ∨ ∃ 𝑢 ∈ 𝑆 ∃ 𝑣 ∈ ( 𝑈 ∖ 𝑆 ) 𝑥 = 𝐴 ) ↔ ( ∃ 𝑢 ∈ ( 𝑈 ∖ 𝑆 ) ( ∃ 𝑣 ∈ 𝑈 𝑧 = 𝐴 ∨ ∃ 𝑖 ∈ 𝐼 𝑧 = 𝐶 ) ∨ ∃ 𝑢 ∈ 𝑆 ∃ 𝑣 ∈ ( 𝑈 ∖ 𝑆 ) 𝑧 = 𝐴 ) ) ) |
| 74 |
67 73
|
elab |
⊢ ( 𝑧 ∈ { 𝑥 ∣ ( ∃ 𝑢 ∈ ( 𝑈 ∖ 𝑆 ) ( ∃ 𝑣 ∈ 𝑈 𝑥 = 𝐴 ∨ ∃ 𝑖 ∈ 𝐼 𝑥 = 𝐶 ) ∨ ∃ 𝑢 ∈ 𝑆 ∃ 𝑣 ∈ ( 𝑈 ∖ 𝑆 ) 𝑥 = 𝐴 ) } ↔ ( ∃ 𝑢 ∈ ( 𝑈 ∖ 𝑆 ) ( ∃ 𝑣 ∈ 𝑈 𝑧 = 𝐴 ∨ ∃ 𝑖 ∈ 𝐼 𝑧 = 𝐶 ) ∨ ∃ 𝑢 ∈ 𝑆 ∃ 𝑣 ∈ ( 𝑈 ∖ 𝑆 ) 𝑧 = 𝐴 ) ) |
| 75 |
54 66 74
|
3bitr4g |
⊢ ( ( ∀ 𝑢 ∈ 𝑈 ( ∀ 𝑣 ∈ 𝑈 𝐵 ∈ 𝑋 ∧ ∀ 𝑖 ∈ 𝐼 𝐷 ∈ 𝑊 ) ∧ 𝑆 ⊆ 𝑈 ) → ( 𝑧 ∈ dom { 〈 𝑥 , 𝑦 〉 ∣ ( ∃ 𝑢 ∈ ( 𝑈 ∖ 𝑆 ) ( ∃ 𝑣 ∈ 𝑈 ( 𝑥 = 𝐴 ∧ 𝑦 = 𝐵 ) ∨ ∃ 𝑖 ∈ 𝐼 ( 𝑥 = 𝐶 ∧ 𝑦 = 𝐷 ) ) ∨ ∃ 𝑢 ∈ 𝑆 ∃ 𝑣 ∈ ( 𝑈 ∖ 𝑆 ) ( 𝑥 = 𝐴 ∧ 𝑦 = 𝐵 ) ) } ↔ 𝑧 ∈ { 𝑥 ∣ ( ∃ 𝑢 ∈ ( 𝑈 ∖ 𝑆 ) ( ∃ 𝑣 ∈ 𝑈 𝑥 = 𝐴 ∨ ∃ 𝑖 ∈ 𝐼 𝑥 = 𝐶 ) ∨ ∃ 𝑢 ∈ 𝑆 ∃ 𝑣 ∈ ( 𝑈 ∖ 𝑆 ) 𝑥 = 𝐴 ) } ) ) |
| 76 |
75
|
eqrdv |
⊢ ( ( ∀ 𝑢 ∈ 𝑈 ( ∀ 𝑣 ∈ 𝑈 𝐵 ∈ 𝑋 ∧ ∀ 𝑖 ∈ 𝐼 𝐷 ∈ 𝑊 ) ∧ 𝑆 ⊆ 𝑈 ) → dom { 〈 𝑥 , 𝑦 〉 ∣ ( ∃ 𝑢 ∈ ( 𝑈 ∖ 𝑆 ) ( ∃ 𝑣 ∈ 𝑈 ( 𝑥 = 𝐴 ∧ 𝑦 = 𝐵 ) ∨ ∃ 𝑖 ∈ 𝐼 ( 𝑥 = 𝐶 ∧ 𝑦 = 𝐷 ) ) ∨ ∃ 𝑢 ∈ 𝑆 ∃ 𝑣 ∈ ( 𝑈 ∖ 𝑆 ) ( 𝑥 = 𝐴 ∧ 𝑦 = 𝐵 ) ) } = { 𝑥 ∣ ( ∃ 𝑢 ∈ ( 𝑈 ∖ 𝑆 ) ( ∃ 𝑣 ∈ 𝑈 𝑥 = 𝐴 ∨ ∃ 𝑖 ∈ 𝐼 𝑥 = 𝐶 ) ∨ ∃ 𝑢 ∈ 𝑆 ∃ 𝑣 ∈ ( 𝑈 ∖ 𝑆 ) 𝑥 = 𝐴 ) } ) |