Description: Upper bound for the domain of a restricted class of ordered pairs. (Contributed by NM, 31-Jan-2004)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | dmopabss | ⊢ dom { 〈 𝑥 , 𝑦 〉 ∣ ( 𝑥 ∈ 𝐴 ∧ 𝜑 ) } ⊆ 𝐴 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dmopab | ⊢ dom { 〈 𝑥 , 𝑦 〉 ∣ ( 𝑥 ∈ 𝐴 ∧ 𝜑 ) } = { 𝑥 ∣ ∃ 𝑦 ( 𝑥 ∈ 𝐴 ∧ 𝜑 ) } | |
| 2 | 19.42v | ⊢ ( ∃ 𝑦 ( 𝑥 ∈ 𝐴 ∧ 𝜑 ) ↔ ( 𝑥 ∈ 𝐴 ∧ ∃ 𝑦 𝜑 ) ) | |
| 3 | 2 | abbii | ⊢ { 𝑥 ∣ ∃ 𝑦 ( 𝑥 ∈ 𝐴 ∧ 𝜑 ) } = { 𝑥 ∣ ( 𝑥 ∈ 𝐴 ∧ ∃ 𝑦 𝜑 ) } |
| 4 | ssab2 | ⊢ { 𝑥 ∣ ( 𝑥 ∈ 𝐴 ∧ ∃ 𝑦 𝜑 ) } ⊆ 𝐴 | |
| 5 | 3 4 | eqsstri | ⊢ { 𝑥 ∣ ∃ 𝑦 ( 𝑥 ∈ 𝐴 ∧ 𝜑 ) } ⊆ 𝐴 |
| 6 | 1 5 | eqsstri | ⊢ dom { 〈 𝑥 , 𝑦 〉 ∣ ( 𝑥 ∈ 𝐴 ∧ 𝜑 ) } ⊆ 𝐴 |