Metamath Proof Explorer


Theorem dmopabss

Description: Upper bound for the domain of a restricted class of ordered pairs. (Contributed by NM, 31-Jan-2004)

Ref Expression
Assertion dmopabss dom { ⟨ 𝑥 , 𝑦 ⟩ ∣ ( 𝑥𝐴𝜑 ) } ⊆ 𝐴

Proof

Step Hyp Ref Expression
1 dmopab dom { ⟨ 𝑥 , 𝑦 ⟩ ∣ ( 𝑥𝐴𝜑 ) } = { 𝑥 ∣ ∃ 𝑦 ( 𝑥𝐴𝜑 ) }
2 19.42v ( ∃ 𝑦 ( 𝑥𝐴𝜑 ) ↔ ( 𝑥𝐴 ∧ ∃ 𝑦 𝜑 ) )
3 2 abbii { 𝑥 ∣ ∃ 𝑦 ( 𝑥𝐴𝜑 ) } = { 𝑥 ∣ ( 𝑥𝐴 ∧ ∃ 𝑦 𝜑 ) }
4 ssab2 { 𝑥 ∣ ( 𝑥𝐴 ∧ ∃ 𝑦 𝜑 ) } ⊆ 𝐴
5 3 4 eqsstri { 𝑥 ∣ ∃ 𝑦 ( 𝑥𝐴𝜑 ) } ⊆ 𝐴
6 1 5 eqsstri dom { ⟨ 𝑥 , 𝑦 ⟩ ∣ ( 𝑥𝐴𝜑 ) } ⊆ 𝐴