Description: Upper bound for the domain of a restricted class of ordered pairs. (Contributed by NM, 31-Jan-2004)
Ref | Expression | ||
---|---|---|---|
Assertion | dmopabss | ⊢ dom { 〈 𝑥 , 𝑦 〉 ∣ ( 𝑥 ∈ 𝐴 ∧ 𝜑 ) } ⊆ 𝐴 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dmopab | ⊢ dom { 〈 𝑥 , 𝑦 〉 ∣ ( 𝑥 ∈ 𝐴 ∧ 𝜑 ) } = { 𝑥 ∣ ∃ 𝑦 ( 𝑥 ∈ 𝐴 ∧ 𝜑 ) } | |
2 | 19.42v | ⊢ ( ∃ 𝑦 ( 𝑥 ∈ 𝐴 ∧ 𝜑 ) ↔ ( 𝑥 ∈ 𝐴 ∧ ∃ 𝑦 𝜑 ) ) | |
3 | 2 | abbii | ⊢ { 𝑥 ∣ ∃ 𝑦 ( 𝑥 ∈ 𝐴 ∧ 𝜑 ) } = { 𝑥 ∣ ( 𝑥 ∈ 𝐴 ∧ ∃ 𝑦 𝜑 ) } |
4 | ssab2 | ⊢ { 𝑥 ∣ ( 𝑥 ∈ 𝐴 ∧ ∃ 𝑦 𝜑 ) } ⊆ 𝐴 | |
5 | 3 4 | eqsstri | ⊢ { 𝑥 ∣ ∃ 𝑦 ( 𝑥 ∈ 𝐴 ∧ 𝜑 ) } ⊆ 𝐴 |
6 | 1 5 | eqsstri | ⊢ dom { 〈 𝑥 , 𝑦 〉 ∣ ( 𝑥 ∈ 𝐴 ∧ 𝜑 ) } ⊆ 𝐴 |