Metamath Proof Explorer


Theorem dmprop

Description: The domain of an unordered pair of ordered pairs. (Contributed by NM, 13-Sep-2011)

Ref Expression
Hypotheses dmsnop.1 𝐵 ∈ V
dmprop.1 𝐷 ∈ V
Assertion dmprop dom { ⟨ 𝐴 , 𝐵 ⟩ , ⟨ 𝐶 , 𝐷 ⟩ } = { 𝐴 , 𝐶 }

Proof

Step Hyp Ref Expression
1 dmsnop.1 𝐵 ∈ V
2 dmprop.1 𝐷 ∈ V
3 dmpropg ( ( 𝐵 ∈ V ∧ 𝐷 ∈ V ) → dom { ⟨ 𝐴 , 𝐵 ⟩ , ⟨ 𝐶 , 𝐷 ⟩ } = { 𝐴 , 𝐶 } )
4 1 2 3 mp2an dom { ⟨ 𝐴 , 𝐵 ⟩ , ⟨ 𝐶 , 𝐷 ⟩ } = { 𝐴 , 𝐶 }