Step |
Hyp |
Ref |
Expression |
1 |
|
df-rq |
⊢ *Q = ( ◡ ·Q “ { 1Q } ) |
2 |
|
cnvimass |
⊢ ( ◡ ·Q “ { 1Q } ) ⊆ dom ·Q |
3 |
1 2
|
eqsstri |
⊢ *Q ⊆ dom ·Q |
4 |
|
mulnqf |
⊢ ·Q : ( Q × Q ) ⟶ Q |
5 |
4
|
fdmi |
⊢ dom ·Q = ( Q × Q ) |
6 |
3 5
|
sseqtri |
⊢ *Q ⊆ ( Q × Q ) |
7 |
|
dmss |
⊢ ( *Q ⊆ ( Q × Q ) → dom *Q ⊆ dom ( Q × Q ) ) |
8 |
6 7
|
ax-mp |
⊢ dom *Q ⊆ dom ( Q × Q ) |
9 |
|
dmxpid |
⊢ dom ( Q × Q ) = Q |
10 |
8 9
|
sseqtri |
⊢ dom *Q ⊆ Q |
11 |
|
recclnq |
⊢ ( 𝑥 ∈ Q → ( *Q ‘ 𝑥 ) ∈ Q ) |
12 |
|
opelxpi |
⊢ ( ( 𝑥 ∈ Q ∧ ( *Q ‘ 𝑥 ) ∈ Q ) → 〈 𝑥 , ( *Q ‘ 𝑥 ) 〉 ∈ ( Q × Q ) ) |
13 |
11 12
|
mpdan |
⊢ ( 𝑥 ∈ Q → 〈 𝑥 , ( *Q ‘ 𝑥 ) 〉 ∈ ( Q × Q ) ) |
14 |
|
df-ov |
⊢ ( 𝑥 ·Q ( *Q ‘ 𝑥 ) ) = ( ·Q ‘ 〈 𝑥 , ( *Q ‘ 𝑥 ) 〉 ) |
15 |
|
recidnq |
⊢ ( 𝑥 ∈ Q → ( 𝑥 ·Q ( *Q ‘ 𝑥 ) ) = 1Q ) |
16 |
14 15
|
eqtr3id |
⊢ ( 𝑥 ∈ Q → ( ·Q ‘ 〈 𝑥 , ( *Q ‘ 𝑥 ) 〉 ) = 1Q ) |
17 |
|
ffn |
⊢ ( ·Q : ( Q × Q ) ⟶ Q → ·Q Fn ( Q × Q ) ) |
18 |
|
fniniseg |
⊢ ( ·Q Fn ( Q × Q ) → ( 〈 𝑥 , ( *Q ‘ 𝑥 ) 〉 ∈ ( ◡ ·Q “ { 1Q } ) ↔ ( 〈 𝑥 , ( *Q ‘ 𝑥 ) 〉 ∈ ( Q × Q ) ∧ ( ·Q ‘ 〈 𝑥 , ( *Q ‘ 𝑥 ) 〉 ) = 1Q ) ) ) |
19 |
4 17 18
|
mp2b |
⊢ ( 〈 𝑥 , ( *Q ‘ 𝑥 ) 〉 ∈ ( ◡ ·Q “ { 1Q } ) ↔ ( 〈 𝑥 , ( *Q ‘ 𝑥 ) 〉 ∈ ( Q × Q ) ∧ ( ·Q ‘ 〈 𝑥 , ( *Q ‘ 𝑥 ) 〉 ) = 1Q ) ) |
20 |
13 16 19
|
sylanbrc |
⊢ ( 𝑥 ∈ Q → 〈 𝑥 , ( *Q ‘ 𝑥 ) 〉 ∈ ( ◡ ·Q “ { 1Q } ) ) |
21 |
20 1
|
eleqtrrdi |
⊢ ( 𝑥 ∈ Q → 〈 𝑥 , ( *Q ‘ 𝑥 ) 〉 ∈ *Q ) |
22 |
|
df-br |
⊢ ( 𝑥 *Q ( *Q ‘ 𝑥 ) ↔ 〈 𝑥 , ( *Q ‘ 𝑥 ) 〉 ∈ *Q ) |
23 |
21 22
|
sylibr |
⊢ ( 𝑥 ∈ Q → 𝑥 *Q ( *Q ‘ 𝑥 ) ) |
24 |
|
vex |
⊢ 𝑥 ∈ V |
25 |
|
fvex |
⊢ ( *Q ‘ 𝑥 ) ∈ V |
26 |
24 25
|
breldm |
⊢ ( 𝑥 *Q ( *Q ‘ 𝑥 ) → 𝑥 ∈ dom *Q ) |
27 |
23 26
|
syl |
⊢ ( 𝑥 ∈ Q → 𝑥 ∈ dom *Q ) |
28 |
27
|
ssriv |
⊢ Q ⊆ dom *Q |
29 |
10 28
|
eqssi |
⊢ dom *Q = Q |