Metamath Proof Explorer


Theorem dmrecnq

Description: Domain of reciprocal on positive fractions. (Contributed by NM, 6-Mar-1996) (Revised by Mario Carneiro, 10-Jul-2014) (New usage is discouraged.)

Ref Expression
Assertion dmrecnq dom *Q = Q

Proof

Step Hyp Ref Expression
1 df-rq *Q = ( ·Q “ { 1Q } )
2 cnvimass ( ·Q “ { 1Q } ) ⊆ dom ·Q
3 1 2 eqsstri *Q ⊆ dom ·Q
4 mulnqf ·Q : ( Q × Q ) ⟶ Q
5 4 fdmi dom ·Q = ( Q × Q )
6 3 5 sseqtri *Q ⊆ ( Q × Q )
7 dmss ( *Q ⊆ ( Q × Q ) → dom *Q ⊆ dom ( Q × Q ) )
8 6 7 ax-mp dom *Q ⊆ dom ( Q × Q )
9 dmxpid dom ( Q × Q ) = Q
10 8 9 sseqtri dom *QQ
11 recclnq ( 𝑥Q → ( *Q𝑥 ) ∈ Q )
12 opelxpi ( ( 𝑥Q ∧ ( *Q𝑥 ) ∈ Q ) → ⟨ 𝑥 , ( *Q𝑥 ) ⟩ ∈ ( Q × Q ) )
13 11 12 mpdan ( 𝑥Q → ⟨ 𝑥 , ( *Q𝑥 ) ⟩ ∈ ( Q × Q ) )
14 df-ov ( 𝑥 ·Q ( *Q𝑥 ) ) = ( ·Q ‘ ⟨ 𝑥 , ( *Q𝑥 ) ⟩ )
15 recidnq ( 𝑥Q → ( 𝑥 ·Q ( *Q𝑥 ) ) = 1Q )
16 14 15 eqtr3id ( 𝑥Q → ( ·Q ‘ ⟨ 𝑥 , ( *Q𝑥 ) ⟩ ) = 1Q )
17 ffn ( ·Q : ( Q × Q ) ⟶ Q → ·Q Fn ( Q × Q ) )
18 fniniseg ( ·Q Fn ( Q × Q ) → ( ⟨ 𝑥 , ( *Q𝑥 ) ⟩ ∈ ( ·Q “ { 1Q } ) ↔ ( ⟨ 𝑥 , ( *Q𝑥 ) ⟩ ∈ ( Q × Q ) ∧ ( ·Q ‘ ⟨ 𝑥 , ( *Q𝑥 ) ⟩ ) = 1Q ) ) )
19 4 17 18 mp2b ( ⟨ 𝑥 , ( *Q𝑥 ) ⟩ ∈ ( ·Q “ { 1Q } ) ↔ ( ⟨ 𝑥 , ( *Q𝑥 ) ⟩ ∈ ( Q × Q ) ∧ ( ·Q ‘ ⟨ 𝑥 , ( *Q𝑥 ) ⟩ ) = 1Q ) )
20 13 16 19 sylanbrc ( 𝑥Q → ⟨ 𝑥 , ( *Q𝑥 ) ⟩ ∈ ( ·Q “ { 1Q } ) )
21 20 1 eleqtrrdi ( 𝑥Q → ⟨ 𝑥 , ( *Q𝑥 ) ⟩ ∈ *Q )
22 df-br ( 𝑥 *Q ( *Q𝑥 ) ↔ ⟨ 𝑥 , ( *Q𝑥 ) ⟩ ∈ *Q )
23 21 22 sylibr ( 𝑥Q𝑥 *Q ( *Q𝑥 ) )
24 vex 𝑥 ∈ V
25 fvex ( *Q𝑥 ) ∈ V
26 24 25 breldm ( 𝑥 *Q ( *Q𝑥 ) → 𝑥 ∈ dom *Q )
27 23 26 syl ( 𝑥Q𝑥 ∈ dom *Q )
28 27 ssriv Q ⊆ dom *Q
29 10 28 eqssi dom *Q = Q