Metamath Proof Explorer


Theorem dmres

Description: The domain of a restriction. Exercise 14 of TakeutiZaring p. 25. (Contributed by NM, 1-Aug-1994)

Ref Expression
Assertion dmres dom ( 𝐴𝐵 ) = ( 𝐵 ∩ dom 𝐴 )

Proof

Step Hyp Ref Expression
1 vex 𝑥 ∈ V
2 1 eldm2 ( 𝑥 ∈ dom ( 𝐴𝐵 ) ↔ ∃ 𝑦𝑥 , 𝑦 ⟩ ∈ ( 𝐴𝐵 ) )
3 19.42v ( ∃ 𝑦 ( 𝑥𝐵 ∧ ⟨ 𝑥 , 𝑦 ⟩ ∈ 𝐴 ) ↔ ( 𝑥𝐵 ∧ ∃ 𝑦𝑥 , 𝑦 ⟩ ∈ 𝐴 ) )
4 vex 𝑦 ∈ V
5 4 opelresi ( ⟨ 𝑥 , 𝑦 ⟩ ∈ ( 𝐴𝐵 ) ↔ ( 𝑥𝐵 ∧ ⟨ 𝑥 , 𝑦 ⟩ ∈ 𝐴 ) )
6 5 exbii ( ∃ 𝑦𝑥 , 𝑦 ⟩ ∈ ( 𝐴𝐵 ) ↔ ∃ 𝑦 ( 𝑥𝐵 ∧ ⟨ 𝑥 , 𝑦 ⟩ ∈ 𝐴 ) )
7 1 eldm2 ( 𝑥 ∈ dom 𝐴 ↔ ∃ 𝑦𝑥 , 𝑦 ⟩ ∈ 𝐴 )
8 7 anbi2i ( ( 𝑥𝐵𝑥 ∈ dom 𝐴 ) ↔ ( 𝑥𝐵 ∧ ∃ 𝑦𝑥 , 𝑦 ⟩ ∈ 𝐴 ) )
9 3 6 8 3bitr4i ( ∃ 𝑦𝑥 , 𝑦 ⟩ ∈ ( 𝐴𝐵 ) ↔ ( 𝑥𝐵𝑥 ∈ dom 𝐴 ) )
10 2 9 bitr2i ( ( 𝑥𝐵𝑥 ∈ dom 𝐴 ) ↔ 𝑥 ∈ dom ( 𝐴𝐵 ) )
11 10 ineqri ( 𝐵 ∩ dom 𝐴 ) = dom ( 𝐴𝐵 )
12 11 eqcomi dom ( 𝐴𝐵 ) = ( 𝐵 ∩ dom 𝐴 )