Metamath Proof Explorer


Theorem dmresexg

Description: The domain of a restriction to a set exists. (Contributed by NM, 7-Apr-1995)

Ref Expression
Assertion dmresexg ( 𝐵𝑉 → dom ( 𝐴𝐵 ) ∈ V )

Proof

Step Hyp Ref Expression
1 dmres dom ( 𝐴𝐵 ) = ( 𝐵 ∩ dom 𝐴 )
2 inex1g ( 𝐵𝑉 → ( 𝐵 ∩ dom 𝐴 ) ∈ V )
3 1 2 eqeltrid ( 𝐵𝑉 → dom ( 𝐴𝐵 ) ∈ V )