Metamath Proof Explorer


Theorem dmresi

Description: The domain of a restricted identity function. (Contributed by NM, 27-Aug-2004)

Ref Expression
Assertion dmresi dom ( I ↾ 𝐴 ) = 𝐴

Proof

Step Hyp Ref Expression
1 ssv 𝐴 ⊆ V
2 dmi dom I = V
3 1 2 sseqtrri 𝐴 ⊆ dom I
4 ssdmres ( 𝐴 ⊆ dom I ↔ dom ( I ↾ 𝐴 ) = 𝐴 )
5 3 4 mpbi dom ( I ↾ 𝐴 ) = 𝐴