Metamath Proof Explorer


Theorem dmressnsn

Description: The domain of a restriction to a singleton is a singleton. (Contributed by Alexander van der Vekens, 2-Jul-2017)

Ref Expression
Assertion dmressnsn ( 𝐴 ∈ dom 𝐹 → dom ( 𝐹 ↾ { 𝐴 } ) = { 𝐴 } )

Proof

Step Hyp Ref Expression
1 dmres dom ( 𝐹 ↾ { 𝐴 } ) = ( { 𝐴 } ∩ dom 𝐹 )
2 snssi ( 𝐴 ∈ dom 𝐹 → { 𝐴 } ⊆ dom 𝐹 )
3 df-ss ( { 𝐴 } ⊆ dom 𝐹 ↔ ( { 𝐴 } ∩ dom 𝐹 ) = { 𝐴 } )
4 2 3 sylib ( 𝐴 ∈ dom 𝐹 → ( { 𝐴 } ∩ dom 𝐹 ) = { 𝐴 } )
5 1 4 eqtrid ( 𝐴 ∈ dom 𝐹 → dom ( 𝐹 ↾ { 𝐴 } ) = { 𝐴 } )