Description: The domain of a restriction to a singleton is a singleton. (Contributed by Alexander van der Vekens, 2-Jul-2017)
Ref | Expression | ||
---|---|---|---|
Assertion | dmressnsn | ⊢ ( 𝐴 ∈ dom 𝐹 → dom ( 𝐹 ↾ { 𝐴 } ) = { 𝐴 } ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dmres | ⊢ dom ( 𝐹 ↾ { 𝐴 } ) = ( { 𝐴 } ∩ dom 𝐹 ) | |
2 | snssi | ⊢ ( 𝐴 ∈ dom 𝐹 → { 𝐴 } ⊆ dom 𝐹 ) | |
3 | df-ss | ⊢ ( { 𝐴 } ⊆ dom 𝐹 ↔ ( { 𝐴 } ∩ dom 𝐹 ) = { 𝐴 } ) | |
4 | 2 3 | sylib | ⊢ ( 𝐴 ∈ dom 𝐹 → ( { 𝐴 } ∩ dom 𝐹 ) = { 𝐴 } ) |
5 | 1 4 | eqtrid | ⊢ ( 𝐴 ∈ dom 𝐹 → dom ( 𝐹 ↾ { 𝐴 } ) = { 𝐴 } ) |