Metamath Proof Explorer


Theorem dmresss

Description: The domain of a restriction is a subset of the original domain. (Contributed by Glauco Siliprandi, 23-Oct-2021)

Ref Expression
Assertion dmresss dom ( 𝐴𝐵 ) ⊆ dom 𝐴

Proof

Step Hyp Ref Expression
1 dmres dom ( 𝐴𝐵 ) = ( 𝐵 ∩ dom 𝐴 )
2 inss2 ( 𝐵 ∩ dom 𝐴 ) ⊆ dom 𝐴
3 1 2 eqsstri dom ( 𝐴𝐵 ) ⊆ dom 𝐴