Metamath Proof Explorer


Theorem dmresv

Description: The domain of a universal restriction. (Contributed by NM, 14-May-2008)

Ref Expression
Assertion dmresv dom ( 𝐴 ↾ V ) = dom 𝐴

Proof

Step Hyp Ref Expression
1 dmres dom ( 𝐴 ↾ V ) = ( V ∩ dom 𝐴 )
2 incom ( V ∩ dom 𝐴 ) = ( dom 𝐴 ∩ V )
3 inv1 ( dom 𝐴 ∩ V ) = dom 𝐴
4 1 2 3 3eqtri dom ( 𝐴 ↾ V ) = dom 𝐴