Metamath Proof Explorer


Theorem dmrnssfld

Description: The domain and range of a class are included in its double union. (Contributed by NM, 13-May-2008)

Ref Expression
Assertion dmrnssfld ( dom 𝐴 ∪ ran 𝐴 ) ⊆ 𝐴

Proof

Step Hyp Ref Expression
1 vex 𝑥 ∈ V
2 1 eldm2 ( 𝑥 ∈ dom 𝐴 ↔ ∃ 𝑦𝑥 , 𝑦 ⟩ ∈ 𝐴 )
3 1 prid1 𝑥 ∈ { 𝑥 , 𝑦 }
4 vex 𝑦 ∈ V
5 1 4 uniop 𝑥 , 𝑦 ⟩ = { 𝑥 , 𝑦 }
6 1 4 uniopel ( ⟨ 𝑥 , 𝑦 ⟩ ∈ 𝐴𝑥 , 𝑦 ⟩ ∈ 𝐴 )
7 5 6 eqeltrrid ( ⟨ 𝑥 , 𝑦 ⟩ ∈ 𝐴 → { 𝑥 , 𝑦 } ∈ 𝐴 )
8 elssuni ( { 𝑥 , 𝑦 } ∈ 𝐴 → { 𝑥 , 𝑦 } ⊆ 𝐴 )
9 7 8 syl ( ⟨ 𝑥 , 𝑦 ⟩ ∈ 𝐴 → { 𝑥 , 𝑦 } ⊆ 𝐴 )
10 9 sseld ( ⟨ 𝑥 , 𝑦 ⟩ ∈ 𝐴 → ( 𝑥 ∈ { 𝑥 , 𝑦 } → 𝑥 𝐴 ) )
11 3 10 mpi ( ⟨ 𝑥 , 𝑦 ⟩ ∈ 𝐴𝑥 𝐴 )
12 11 exlimiv ( ∃ 𝑦𝑥 , 𝑦 ⟩ ∈ 𝐴𝑥 𝐴 )
13 2 12 sylbi ( 𝑥 ∈ dom 𝐴𝑥 𝐴 )
14 13 ssriv dom 𝐴 𝐴
15 4 elrn2 ( 𝑦 ∈ ran 𝐴 ↔ ∃ 𝑥𝑥 , 𝑦 ⟩ ∈ 𝐴 )
16 4 prid2 𝑦 ∈ { 𝑥 , 𝑦 }
17 9 sseld ( ⟨ 𝑥 , 𝑦 ⟩ ∈ 𝐴 → ( 𝑦 ∈ { 𝑥 , 𝑦 } → 𝑦 𝐴 ) )
18 16 17 mpi ( ⟨ 𝑥 , 𝑦 ⟩ ∈ 𝐴𝑦 𝐴 )
19 18 exlimiv ( ∃ 𝑥𝑥 , 𝑦 ⟩ ∈ 𝐴𝑦 𝐴 )
20 15 19 sylbi ( 𝑦 ∈ ran 𝐴𝑦 𝐴 )
21 20 ssriv ran 𝐴 𝐴
22 14 21 unssi ( dom 𝐴 ∪ ran 𝐴 ) ⊆ 𝐴