Description: The domain of a singleton is empty if the singleton's argument contains the empty set. (Contributed by NM, 15-Dec-2008)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | dmsn0el | ⊢ ( ∅ ∈ 𝐴 → dom { 𝐴 } = ∅ ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dmsnn0 | ⊢ ( 𝐴 ∈ ( V × V ) ↔ dom { 𝐴 } ≠ ∅ ) | |
| 2 | 0nelelxp | ⊢ ( 𝐴 ∈ ( V × V ) → ¬ ∅ ∈ 𝐴 ) | |
| 3 | 1 2 | sylbir | ⊢ ( dom { 𝐴 } ≠ ∅ → ¬ ∅ ∈ 𝐴 ) |
| 4 | 3 | necon4ai | ⊢ ( ∅ ∈ 𝐴 → dom { 𝐴 } = ∅ ) |