Metamath Proof Explorer


Theorem dmsn0el

Description: The domain of a singleton is empty if the singleton's argument contains the empty set. (Contributed by NM, 15-Dec-2008)

Ref Expression
Assertion dmsn0el ( ∅ ∈ 𝐴 → dom { 𝐴 } = ∅ )

Proof

Step Hyp Ref Expression
1 dmsnn0 ( 𝐴 ∈ ( V × V ) ↔ dom { 𝐴 } ≠ ∅ )
2 0nelelxp ( 𝐴 ∈ ( V × V ) → ¬ ∅ ∈ 𝐴 )
3 1 2 sylbir ( dom { 𝐴 } ≠ ∅ → ¬ ∅ ∈ 𝐴 )
4 3 necon4ai ( ∅ ∈ 𝐴 → dom { 𝐴 } = ∅ )