Metamath Proof Explorer


Theorem dmss

Description: Subset theorem for domain. (Contributed by NM, 11-Aug-1994)

Ref Expression
Assertion dmss ( 𝐴𝐵 → dom 𝐴 ⊆ dom 𝐵 )

Proof

Step Hyp Ref Expression
1 ssel ( 𝐴𝐵 → ( ⟨ 𝑥 , 𝑦 ⟩ ∈ 𝐴 → ⟨ 𝑥 , 𝑦 ⟩ ∈ 𝐵 ) )
2 1 eximdv ( 𝐴𝐵 → ( ∃ 𝑦𝑥 , 𝑦 ⟩ ∈ 𝐴 → ∃ 𝑦𝑥 , 𝑦 ⟩ ∈ 𝐵 ) )
3 vex 𝑥 ∈ V
4 3 eldm2 ( 𝑥 ∈ dom 𝐴 ↔ ∃ 𝑦𝑥 , 𝑦 ⟩ ∈ 𝐴 )
5 3 eldm2 ( 𝑥 ∈ dom 𝐵 ↔ ∃ 𝑦𝑥 , 𝑦 ⟩ ∈ 𝐵 )
6 2 4 5 3imtr4g ( 𝐴𝐵 → ( 𝑥 ∈ dom 𝐴𝑥 ∈ dom 𝐵 ) )
7 6 ssrdv ( 𝐴𝐵 → dom 𝐴 ⊆ dom 𝐵 )