Description: Subset theorem for domain. (Contributed by NM, 11-Aug-1994)
Ref | Expression | ||
---|---|---|---|
Assertion | dmss | ⊢ ( 𝐴 ⊆ 𝐵 → dom 𝐴 ⊆ dom 𝐵 ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ssel | ⊢ ( 𝐴 ⊆ 𝐵 → ( 〈 𝑥 , 𝑦 〉 ∈ 𝐴 → 〈 𝑥 , 𝑦 〉 ∈ 𝐵 ) ) | |
2 | 1 | eximdv | ⊢ ( 𝐴 ⊆ 𝐵 → ( ∃ 𝑦 〈 𝑥 , 𝑦 〉 ∈ 𝐴 → ∃ 𝑦 〈 𝑥 , 𝑦 〉 ∈ 𝐵 ) ) |
3 | vex | ⊢ 𝑥 ∈ V | |
4 | 3 | eldm2 | ⊢ ( 𝑥 ∈ dom 𝐴 ↔ ∃ 𝑦 〈 𝑥 , 𝑦 〉 ∈ 𝐴 ) |
5 | 3 | eldm2 | ⊢ ( 𝑥 ∈ dom 𝐵 ↔ ∃ 𝑦 〈 𝑥 , 𝑦 〉 ∈ 𝐵 ) |
6 | 2 4 5 | 3imtr4g | ⊢ ( 𝐴 ⊆ 𝐵 → ( 𝑥 ∈ dom 𝐴 → 𝑥 ∈ dom 𝐵 ) ) |
7 | 6 | ssrdv | ⊢ ( 𝐴 ⊆ 𝐵 → dom 𝐴 ⊆ dom 𝐵 ) |