Metamath Proof Explorer


Theorem dmtopon

Description: The domain of TopOn is the universal class _V . (Contributed by BJ, 29-Apr-2021)

Ref Expression
Assertion dmtopon dom TopOn = V

Proof

Step Hyp Ref Expression
1 vpwex 𝒫 𝑥 ∈ V
2 1 pwex 𝒫 𝒫 𝑥 ∈ V
3 eqcom ( 𝑥 = 𝑦 𝑦 = 𝑥 )
4 3 rabbii { 𝑦 ∈ Top ∣ 𝑥 = 𝑦 } = { 𝑦 ∈ Top ∣ 𝑦 = 𝑥 }
5 rabssab { 𝑦 ∈ Top ∣ 𝑦 = 𝑥 } ⊆ { 𝑦 𝑦 = 𝑥 }
6 pwpwssunieq { 𝑦 𝑦 = 𝑥 } ⊆ 𝒫 𝒫 𝑥
7 5 6 sstri { 𝑦 ∈ Top ∣ 𝑦 = 𝑥 } ⊆ 𝒫 𝒫 𝑥
8 4 7 eqsstri { 𝑦 ∈ Top ∣ 𝑥 = 𝑦 } ⊆ 𝒫 𝒫 𝑥
9 2 8 ssexi { 𝑦 ∈ Top ∣ 𝑥 = 𝑦 } ∈ V
10 df-topon TopOn = ( 𝑥 ∈ V ↦ { 𝑦 ∈ Top ∣ 𝑥 = 𝑦 } )
11 9 10 dmmpti dom TopOn = V