Description: The domain of TopOn is the universal class _V . (Contributed by BJ, 29-Apr-2021)
Ref | Expression | ||
---|---|---|---|
Assertion | dmtopon | ⊢ dom TopOn = V |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | vpwex | ⊢ 𝒫 𝑥 ∈ V | |
2 | 1 | pwex | ⊢ 𝒫 𝒫 𝑥 ∈ V |
3 | eqcom | ⊢ ( 𝑥 = ∪ 𝑦 ↔ ∪ 𝑦 = 𝑥 ) | |
4 | 3 | rabbii | ⊢ { 𝑦 ∈ Top ∣ 𝑥 = ∪ 𝑦 } = { 𝑦 ∈ Top ∣ ∪ 𝑦 = 𝑥 } |
5 | rabssab | ⊢ { 𝑦 ∈ Top ∣ ∪ 𝑦 = 𝑥 } ⊆ { 𝑦 ∣ ∪ 𝑦 = 𝑥 } | |
6 | pwpwssunieq | ⊢ { 𝑦 ∣ ∪ 𝑦 = 𝑥 } ⊆ 𝒫 𝒫 𝑥 | |
7 | 5 6 | sstri | ⊢ { 𝑦 ∈ Top ∣ ∪ 𝑦 = 𝑥 } ⊆ 𝒫 𝒫 𝑥 |
8 | 4 7 | eqsstri | ⊢ { 𝑦 ∈ Top ∣ 𝑥 = ∪ 𝑦 } ⊆ 𝒫 𝒫 𝑥 |
9 | 2 8 | ssexi | ⊢ { 𝑦 ∈ Top ∣ 𝑥 = ∪ 𝑦 } ∈ V |
10 | df-topon | ⊢ TopOn = ( 𝑥 ∈ V ↦ { 𝑦 ∈ Top ∣ 𝑥 = ∪ 𝑦 } ) | |
11 | 9 10 | dmmpti | ⊢ dom TopOn = V |