| Step | Hyp | Ref | Expression | 
						
							| 1 |  | df-ttrcl | ⊢ t++ 𝑅  =  { 〈 𝑥 ,  𝑦 〉  ∣  ∃ 𝑛  ∈  ( ω  ∖  1o ) ∃ 𝑓 ( 𝑓  Fn  suc  𝑛  ∧  ( ( 𝑓 ‘ ∅ )  =  𝑥  ∧  ( 𝑓 ‘ 𝑛 )  =  𝑦 )  ∧  ∀ 𝑎  ∈  𝑛 ( 𝑓 ‘ 𝑎 ) 𝑅 ( 𝑓 ‘ suc  𝑎 ) ) } | 
						
							| 2 | 1 | dmeqi | ⊢ dom  t++ 𝑅  =  dom  { 〈 𝑥 ,  𝑦 〉  ∣  ∃ 𝑛  ∈  ( ω  ∖  1o ) ∃ 𝑓 ( 𝑓  Fn  suc  𝑛  ∧  ( ( 𝑓 ‘ ∅ )  =  𝑥  ∧  ( 𝑓 ‘ 𝑛 )  =  𝑦 )  ∧  ∀ 𝑎  ∈  𝑛 ( 𝑓 ‘ 𝑎 ) 𝑅 ( 𝑓 ‘ suc  𝑎 ) ) } | 
						
							| 3 |  | dmopab | ⊢ dom  { 〈 𝑥 ,  𝑦 〉  ∣  ∃ 𝑛  ∈  ( ω  ∖  1o ) ∃ 𝑓 ( 𝑓  Fn  suc  𝑛  ∧  ( ( 𝑓 ‘ ∅ )  =  𝑥  ∧  ( 𝑓 ‘ 𝑛 )  =  𝑦 )  ∧  ∀ 𝑎  ∈  𝑛 ( 𝑓 ‘ 𝑎 ) 𝑅 ( 𝑓 ‘ suc  𝑎 ) ) }  =  { 𝑥  ∣  ∃ 𝑦 ∃ 𝑛  ∈  ( ω  ∖  1o ) ∃ 𝑓 ( 𝑓  Fn  suc  𝑛  ∧  ( ( 𝑓 ‘ ∅ )  =  𝑥  ∧  ( 𝑓 ‘ 𝑛 )  =  𝑦 )  ∧  ∀ 𝑎  ∈  𝑛 ( 𝑓 ‘ 𝑎 ) 𝑅 ( 𝑓 ‘ suc  𝑎 ) ) } | 
						
							| 4 | 2 3 | eqtri | ⊢ dom  t++ 𝑅  =  { 𝑥  ∣  ∃ 𝑦 ∃ 𝑛  ∈  ( ω  ∖  1o ) ∃ 𝑓 ( 𝑓  Fn  suc  𝑛  ∧  ( ( 𝑓 ‘ ∅ )  =  𝑥  ∧  ( 𝑓 ‘ 𝑛 )  =  𝑦 )  ∧  ∀ 𝑎  ∈  𝑛 ( 𝑓 ‘ 𝑎 ) 𝑅 ( 𝑓 ‘ suc  𝑎 ) ) } | 
						
							| 5 |  | simpr2l | ⊢ ( ( 𝑛  ∈  ( ω  ∖  1o )  ∧  ( 𝑓  Fn  suc  𝑛  ∧  ( ( 𝑓 ‘ ∅ )  =  𝑥  ∧  ( 𝑓 ‘ 𝑛 )  =  𝑦 )  ∧  ∀ 𝑎  ∈  𝑛 ( 𝑓 ‘ 𝑎 ) 𝑅 ( 𝑓 ‘ suc  𝑎 ) ) )  →  ( 𝑓 ‘ ∅ )  =  𝑥 ) | 
						
							| 6 |  | fveq2 | ⊢ ( 𝑎  =  ∅  →  ( 𝑓 ‘ 𝑎 )  =  ( 𝑓 ‘ ∅ ) ) | 
						
							| 7 |  | suceq | ⊢ ( 𝑎  =  ∅  →  suc  𝑎  =  suc  ∅ ) | 
						
							| 8 |  | df-1o | ⊢ 1o  =  suc  ∅ | 
						
							| 9 | 7 8 | eqtr4di | ⊢ ( 𝑎  =  ∅  →  suc  𝑎  =  1o ) | 
						
							| 10 | 9 | fveq2d | ⊢ ( 𝑎  =  ∅  →  ( 𝑓 ‘ suc  𝑎 )  =  ( 𝑓 ‘ 1o ) ) | 
						
							| 11 | 6 10 | breq12d | ⊢ ( 𝑎  =  ∅  →  ( ( 𝑓 ‘ 𝑎 ) 𝑅 ( 𝑓 ‘ suc  𝑎 )  ↔  ( 𝑓 ‘ ∅ ) 𝑅 ( 𝑓 ‘ 1o ) ) ) | 
						
							| 12 |  | simpr3 | ⊢ ( ( 𝑛  ∈  ( ω  ∖  1o )  ∧  ( 𝑓  Fn  suc  𝑛  ∧  ( ( 𝑓 ‘ ∅ )  =  𝑥  ∧  ( 𝑓 ‘ 𝑛 )  =  𝑦 )  ∧  ∀ 𝑎  ∈  𝑛 ( 𝑓 ‘ 𝑎 ) 𝑅 ( 𝑓 ‘ suc  𝑎 ) ) )  →  ∀ 𝑎  ∈  𝑛 ( 𝑓 ‘ 𝑎 ) 𝑅 ( 𝑓 ‘ suc  𝑎 ) ) | 
						
							| 13 |  | eldif | ⊢ ( 𝑛  ∈  ( ω  ∖  1o )  ↔  ( 𝑛  ∈  ω  ∧  ¬  𝑛  ∈  1o ) ) | 
						
							| 14 |  | 0ex | ⊢ ∅  ∈  V | 
						
							| 15 |  | nnord | ⊢ ( 𝑛  ∈  ω  →  Ord  𝑛 ) | 
						
							| 16 |  | ordelsuc | ⊢ ( ( ∅  ∈  V  ∧  Ord  𝑛 )  →  ( ∅  ∈  𝑛  ↔  suc  ∅  ⊆  𝑛 ) ) | 
						
							| 17 | 14 15 16 | sylancr | ⊢ ( 𝑛  ∈  ω  →  ( ∅  ∈  𝑛  ↔  suc  ∅  ⊆  𝑛 ) ) | 
						
							| 18 | 8 | sseq1i | ⊢ ( 1o  ⊆  𝑛  ↔  suc  ∅  ⊆  𝑛 ) | 
						
							| 19 |  | 1on | ⊢ 1o  ∈  On | 
						
							| 20 | 19 | onordi | ⊢ Ord  1o | 
						
							| 21 |  | ordtri1 | ⊢ ( ( Ord  1o  ∧  Ord  𝑛 )  →  ( 1o  ⊆  𝑛  ↔  ¬  𝑛  ∈  1o ) ) | 
						
							| 22 | 20 15 21 | sylancr | ⊢ ( 𝑛  ∈  ω  →  ( 1o  ⊆  𝑛  ↔  ¬  𝑛  ∈  1o ) ) | 
						
							| 23 | 18 22 | bitr3id | ⊢ ( 𝑛  ∈  ω  →  ( suc  ∅  ⊆  𝑛  ↔  ¬  𝑛  ∈  1o ) ) | 
						
							| 24 | 17 23 | bitr2d | ⊢ ( 𝑛  ∈  ω  →  ( ¬  𝑛  ∈  1o  ↔  ∅  ∈  𝑛 ) ) | 
						
							| 25 | 24 | biimpa | ⊢ ( ( 𝑛  ∈  ω  ∧  ¬  𝑛  ∈  1o )  →  ∅  ∈  𝑛 ) | 
						
							| 26 | 13 25 | sylbi | ⊢ ( 𝑛  ∈  ( ω  ∖  1o )  →  ∅  ∈  𝑛 ) | 
						
							| 27 | 26 | adantr | ⊢ ( ( 𝑛  ∈  ( ω  ∖  1o )  ∧  ( 𝑓  Fn  suc  𝑛  ∧  ( ( 𝑓 ‘ ∅ )  =  𝑥  ∧  ( 𝑓 ‘ 𝑛 )  =  𝑦 )  ∧  ∀ 𝑎  ∈  𝑛 ( 𝑓 ‘ 𝑎 ) 𝑅 ( 𝑓 ‘ suc  𝑎 ) ) )  →  ∅  ∈  𝑛 ) | 
						
							| 28 | 11 12 27 | rspcdva | ⊢ ( ( 𝑛  ∈  ( ω  ∖  1o )  ∧  ( 𝑓  Fn  suc  𝑛  ∧  ( ( 𝑓 ‘ ∅ )  =  𝑥  ∧  ( 𝑓 ‘ 𝑛 )  =  𝑦 )  ∧  ∀ 𝑎  ∈  𝑛 ( 𝑓 ‘ 𝑎 ) 𝑅 ( 𝑓 ‘ suc  𝑎 ) ) )  →  ( 𝑓 ‘ ∅ ) 𝑅 ( 𝑓 ‘ 1o ) ) | 
						
							| 29 | 5 28 | eqbrtrrd | ⊢ ( ( 𝑛  ∈  ( ω  ∖  1o )  ∧  ( 𝑓  Fn  suc  𝑛  ∧  ( ( 𝑓 ‘ ∅ )  =  𝑥  ∧  ( 𝑓 ‘ 𝑛 )  =  𝑦 )  ∧  ∀ 𝑎  ∈  𝑛 ( 𝑓 ‘ 𝑎 ) 𝑅 ( 𝑓 ‘ suc  𝑎 ) ) )  →  𝑥 𝑅 ( 𝑓 ‘ 1o ) ) | 
						
							| 30 |  | vex | ⊢ 𝑥  ∈  V | 
						
							| 31 |  | fvex | ⊢ ( 𝑓 ‘ 1o )  ∈  V | 
						
							| 32 | 30 31 | breldm | ⊢ ( 𝑥 𝑅 ( 𝑓 ‘ 1o )  →  𝑥  ∈  dom  𝑅 ) | 
						
							| 33 | 29 32 | syl | ⊢ ( ( 𝑛  ∈  ( ω  ∖  1o )  ∧  ( 𝑓  Fn  suc  𝑛  ∧  ( ( 𝑓 ‘ ∅ )  =  𝑥  ∧  ( 𝑓 ‘ 𝑛 )  =  𝑦 )  ∧  ∀ 𝑎  ∈  𝑛 ( 𝑓 ‘ 𝑎 ) 𝑅 ( 𝑓 ‘ suc  𝑎 ) ) )  →  𝑥  ∈  dom  𝑅 ) | 
						
							| 34 | 33 | ex | ⊢ ( 𝑛  ∈  ( ω  ∖  1o )  →  ( ( 𝑓  Fn  suc  𝑛  ∧  ( ( 𝑓 ‘ ∅ )  =  𝑥  ∧  ( 𝑓 ‘ 𝑛 )  =  𝑦 )  ∧  ∀ 𝑎  ∈  𝑛 ( 𝑓 ‘ 𝑎 ) 𝑅 ( 𝑓 ‘ suc  𝑎 ) )  →  𝑥  ∈  dom  𝑅 ) ) | 
						
							| 35 | 34 | exlimdv | ⊢ ( 𝑛  ∈  ( ω  ∖  1o )  →  ( ∃ 𝑓 ( 𝑓  Fn  suc  𝑛  ∧  ( ( 𝑓 ‘ ∅ )  =  𝑥  ∧  ( 𝑓 ‘ 𝑛 )  =  𝑦 )  ∧  ∀ 𝑎  ∈  𝑛 ( 𝑓 ‘ 𝑎 ) 𝑅 ( 𝑓 ‘ suc  𝑎 ) )  →  𝑥  ∈  dom  𝑅 ) ) | 
						
							| 36 | 35 | rexlimiv | ⊢ ( ∃ 𝑛  ∈  ( ω  ∖  1o ) ∃ 𝑓 ( 𝑓  Fn  suc  𝑛  ∧  ( ( 𝑓 ‘ ∅ )  =  𝑥  ∧  ( 𝑓 ‘ 𝑛 )  =  𝑦 )  ∧  ∀ 𝑎  ∈  𝑛 ( 𝑓 ‘ 𝑎 ) 𝑅 ( 𝑓 ‘ suc  𝑎 ) )  →  𝑥  ∈  dom  𝑅 ) | 
						
							| 37 | 36 | exlimiv | ⊢ ( ∃ 𝑦 ∃ 𝑛  ∈  ( ω  ∖  1o ) ∃ 𝑓 ( 𝑓  Fn  suc  𝑛  ∧  ( ( 𝑓 ‘ ∅ )  =  𝑥  ∧  ( 𝑓 ‘ 𝑛 )  =  𝑦 )  ∧  ∀ 𝑎  ∈  𝑛 ( 𝑓 ‘ 𝑎 ) 𝑅 ( 𝑓 ‘ suc  𝑎 ) )  →  𝑥  ∈  dom  𝑅 ) | 
						
							| 38 | 37 | abssi | ⊢ { 𝑥  ∣  ∃ 𝑦 ∃ 𝑛  ∈  ( ω  ∖  1o ) ∃ 𝑓 ( 𝑓  Fn  suc  𝑛  ∧  ( ( 𝑓 ‘ ∅ )  =  𝑥  ∧  ( 𝑓 ‘ 𝑛 )  =  𝑦 )  ∧  ∀ 𝑎  ∈  𝑛 ( 𝑓 ‘ 𝑎 ) 𝑅 ( 𝑓 ‘ suc  𝑎 ) ) }  ⊆  dom  𝑅 | 
						
							| 39 | 4 38 | eqsstri | ⊢ dom  t++ 𝑅  ⊆  dom  𝑅 | 
						
							| 40 |  | dmresv | ⊢ dom  ( 𝑅  ↾  V )  =  dom  𝑅 | 
						
							| 41 |  | relres | ⊢ Rel  ( 𝑅  ↾  V ) | 
						
							| 42 |  | ssttrcl | ⊢ ( Rel  ( 𝑅  ↾  V )  →  ( 𝑅  ↾  V )  ⊆  t++ ( 𝑅  ↾  V ) ) | 
						
							| 43 | 41 42 | ax-mp | ⊢ ( 𝑅  ↾  V )  ⊆  t++ ( 𝑅  ↾  V ) | 
						
							| 44 |  | ttrclresv | ⊢ t++ ( 𝑅  ↾  V )  =  t++ 𝑅 | 
						
							| 45 | 43 44 | sseqtri | ⊢ ( 𝑅  ↾  V )  ⊆  t++ 𝑅 | 
						
							| 46 |  | dmss | ⊢ ( ( 𝑅  ↾  V )  ⊆  t++ 𝑅  →  dom  ( 𝑅  ↾  V )  ⊆  dom  t++ 𝑅 ) | 
						
							| 47 | 45 46 | ax-mp | ⊢ dom  ( 𝑅  ↾  V )  ⊆  dom  t++ 𝑅 | 
						
							| 48 | 40 47 | eqsstrri | ⊢ dom  𝑅  ⊆  dom  t++ 𝑅 | 
						
							| 49 | 39 48 | eqssi | ⊢ dom  t++ 𝑅  =  dom  𝑅 |