Metamath Proof Explorer


Theorem dmun

Description: The domain of a union is the union of domains. Exercise 56(a) of Enderton p. 65. (Contributed by NM, 12-Aug-1994) (Proof shortened by Andrew Salmon, 27-Aug-2011)

Ref Expression
Assertion dmun dom ( 𝐴𝐵 ) = ( dom 𝐴 ∪ dom 𝐵 )

Proof

Step Hyp Ref Expression
1 unab ( { 𝑦 ∣ ∃ 𝑥 𝑦 𝐴 𝑥 } ∪ { 𝑦 ∣ ∃ 𝑥 𝑦 𝐵 𝑥 } ) = { 𝑦 ∣ ( ∃ 𝑥 𝑦 𝐴 𝑥 ∨ ∃ 𝑥 𝑦 𝐵 𝑥 ) }
2 brun ( 𝑦 ( 𝐴𝐵 ) 𝑥 ↔ ( 𝑦 𝐴 𝑥𝑦 𝐵 𝑥 ) )
3 2 exbii ( ∃ 𝑥 𝑦 ( 𝐴𝐵 ) 𝑥 ↔ ∃ 𝑥 ( 𝑦 𝐴 𝑥𝑦 𝐵 𝑥 ) )
4 19.43 ( ∃ 𝑥 ( 𝑦 𝐴 𝑥𝑦 𝐵 𝑥 ) ↔ ( ∃ 𝑥 𝑦 𝐴 𝑥 ∨ ∃ 𝑥 𝑦 𝐵 𝑥 ) )
5 3 4 bitr2i ( ( ∃ 𝑥 𝑦 𝐴 𝑥 ∨ ∃ 𝑥 𝑦 𝐵 𝑥 ) ↔ ∃ 𝑥 𝑦 ( 𝐴𝐵 ) 𝑥 )
6 5 abbii { 𝑦 ∣ ( ∃ 𝑥 𝑦 𝐴 𝑥 ∨ ∃ 𝑥 𝑦 𝐵 𝑥 ) } = { 𝑦 ∣ ∃ 𝑥 𝑦 ( 𝐴𝐵 ) 𝑥 }
7 1 6 eqtri ( { 𝑦 ∣ ∃ 𝑥 𝑦 𝐴 𝑥 } ∪ { 𝑦 ∣ ∃ 𝑥 𝑦 𝐵 𝑥 } ) = { 𝑦 ∣ ∃ 𝑥 𝑦 ( 𝐴𝐵 ) 𝑥 }
8 df-dm dom 𝐴 = { 𝑦 ∣ ∃ 𝑥 𝑦 𝐴 𝑥 }
9 df-dm dom 𝐵 = { 𝑦 ∣ ∃ 𝑥 𝑦 𝐵 𝑥 }
10 8 9 uneq12i ( dom 𝐴 ∪ dom 𝐵 ) = ( { 𝑦 ∣ ∃ 𝑥 𝑦 𝐴 𝑥 } ∪ { 𝑦 ∣ ∃ 𝑥 𝑦 𝐵 𝑥 } )
11 df-dm dom ( 𝐴𝐵 ) = { 𝑦 ∣ ∃ 𝑥 𝑦 ( 𝐴𝐵 ) 𝑥 }
12 7 10 11 3eqtr4ri dom ( 𝐴𝐵 ) = ( dom 𝐴 ∪ dom 𝐵 )