Metamath Proof Explorer


Theorem dmuni

Description: The domain of a union. Part of Exercise 8 of Enderton p. 41. (Contributed by NM, 3-Feb-2004)

Ref Expression
Assertion dmuni dom 𝐴 = 𝑥𝐴 dom 𝑥

Proof

Step Hyp Ref Expression
1 excom ( ∃ 𝑧𝑥 ( ⟨ 𝑦 , 𝑧 ⟩ ∈ 𝑥𝑥𝐴 ) ↔ ∃ 𝑥𝑧 ( ⟨ 𝑦 , 𝑧 ⟩ ∈ 𝑥𝑥𝐴 ) )
2 ancom ( ( ∃ 𝑧𝑦 , 𝑧 ⟩ ∈ 𝑥𝑥𝐴 ) ↔ ( 𝑥𝐴 ∧ ∃ 𝑧𝑦 , 𝑧 ⟩ ∈ 𝑥 ) )
3 19.41v ( ∃ 𝑧 ( ⟨ 𝑦 , 𝑧 ⟩ ∈ 𝑥𝑥𝐴 ) ↔ ( ∃ 𝑧𝑦 , 𝑧 ⟩ ∈ 𝑥𝑥𝐴 ) )
4 vex 𝑦 ∈ V
5 4 eldm2 ( 𝑦 ∈ dom 𝑥 ↔ ∃ 𝑧𝑦 , 𝑧 ⟩ ∈ 𝑥 )
6 5 anbi2i ( ( 𝑥𝐴𝑦 ∈ dom 𝑥 ) ↔ ( 𝑥𝐴 ∧ ∃ 𝑧𝑦 , 𝑧 ⟩ ∈ 𝑥 ) )
7 2 3 6 3bitr4i ( ∃ 𝑧 ( ⟨ 𝑦 , 𝑧 ⟩ ∈ 𝑥𝑥𝐴 ) ↔ ( 𝑥𝐴𝑦 ∈ dom 𝑥 ) )
8 7 exbii ( ∃ 𝑥𝑧 ( ⟨ 𝑦 , 𝑧 ⟩ ∈ 𝑥𝑥𝐴 ) ↔ ∃ 𝑥 ( 𝑥𝐴𝑦 ∈ dom 𝑥 ) )
9 1 8 bitri ( ∃ 𝑧𝑥 ( ⟨ 𝑦 , 𝑧 ⟩ ∈ 𝑥𝑥𝐴 ) ↔ ∃ 𝑥 ( 𝑥𝐴𝑦 ∈ dom 𝑥 ) )
10 eluni ( ⟨ 𝑦 , 𝑧 ⟩ ∈ 𝐴 ↔ ∃ 𝑥 ( ⟨ 𝑦 , 𝑧 ⟩ ∈ 𝑥𝑥𝐴 ) )
11 10 exbii ( ∃ 𝑧𝑦 , 𝑧 ⟩ ∈ 𝐴 ↔ ∃ 𝑧𝑥 ( ⟨ 𝑦 , 𝑧 ⟩ ∈ 𝑥𝑥𝐴 ) )
12 df-rex ( ∃ 𝑥𝐴 𝑦 ∈ dom 𝑥 ↔ ∃ 𝑥 ( 𝑥𝐴𝑦 ∈ dom 𝑥 ) )
13 9 11 12 3bitr4i ( ∃ 𝑧𝑦 , 𝑧 ⟩ ∈ 𝐴 ↔ ∃ 𝑥𝐴 𝑦 ∈ dom 𝑥 )
14 4 eldm2 ( 𝑦 ∈ dom 𝐴 ↔ ∃ 𝑧𝑦 , 𝑧 ⟩ ∈ 𝐴 )
15 eliun ( 𝑦 𝑥𝐴 dom 𝑥 ↔ ∃ 𝑥𝐴 𝑦 ∈ dom 𝑥 )
16 13 14 15 3bitr4i ( 𝑦 ∈ dom 𝐴𝑦 𝑥𝐴 dom 𝑥 )
17 16 eqriv dom 𝐴 = 𝑥𝐴 dom 𝑥