Database
SUPPLEMENTARY MATERIAL (USERS' MATHBOXES)
Mathbox for Glauco Siliprandi
Functions
dmuz
Next ⟩
fmptd2f
Metamath Proof Explorer
Ascii
Structured
Theorem
dmuz
Description:
Domain of the upper integers function.
(Contributed by
Glauco Siliprandi
, 23-Oct-2021)
Ref
Expression
Assertion
dmuz
⊢
dom ℤ
≥
= ℤ
Proof
Step
Hyp
Ref
Expression
1
uzf
⊢
ℤ
≥
: ℤ ⟶ 𝒫 ℤ
2
1
fdmi
⊢
dom ℤ
≥
= ℤ