Metamath Proof Explorer


Theorem dmxp

Description: The domain of a Cartesian product. Part of Theorem 3.13(x) of Monk1 p. 37. (Contributed by NM, 28-Jul-1995) (Proof shortened by Andrew Salmon, 27-Aug-2011)

Ref Expression
Assertion dmxp ( 𝐵 ≠ ∅ → dom ( 𝐴 × 𝐵 ) = 𝐴 )

Proof

Step Hyp Ref Expression
1 df-xp ( 𝐴 × 𝐵 ) = { ⟨ 𝑦 , 𝑥 ⟩ ∣ ( 𝑦𝐴𝑥𝐵 ) }
2 1 dmeqi dom ( 𝐴 × 𝐵 ) = dom { ⟨ 𝑦 , 𝑥 ⟩ ∣ ( 𝑦𝐴𝑥𝐵 ) }
3 n0 ( 𝐵 ≠ ∅ ↔ ∃ 𝑥 𝑥𝐵 )
4 3 biimpi ( 𝐵 ≠ ∅ → ∃ 𝑥 𝑥𝐵 )
5 4 ralrimivw ( 𝐵 ≠ ∅ → ∀ 𝑦𝐴𝑥 𝑥𝐵 )
6 dmopab3 ( ∀ 𝑦𝐴𝑥 𝑥𝐵 ↔ dom { ⟨ 𝑦 , 𝑥 ⟩ ∣ ( 𝑦𝐴𝑥𝐵 ) } = 𝐴 )
7 5 6 sylib ( 𝐵 ≠ ∅ → dom { ⟨ 𝑦 , 𝑥 ⟩ ∣ ( 𝑦𝐴𝑥𝐵 ) } = 𝐴 )
8 2 7 eqtrid ( 𝐵 ≠ ∅ → dom ( 𝐴 × 𝐵 ) = 𝐴 )