Description: The domain of a Cartesian product. Part of Theorem 3.13(x) of Monk1 p. 37. (Contributed by NM, 28-Jul-1995) (Proof shortened by Andrew Salmon, 27-Aug-2011)
Ref | Expression | ||
---|---|---|---|
Assertion | dmxp | ⊢ ( 𝐵 ≠ ∅ → dom ( 𝐴 × 𝐵 ) = 𝐴 ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-xp | ⊢ ( 𝐴 × 𝐵 ) = { 〈 𝑦 , 𝑥 〉 ∣ ( 𝑦 ∈ 𝐴 ∧ 𝑥 ∈ 𝐵 ) } | |
2 | 1 | dmeqi | ⊢ dom ( 𝐴 × 𝐵 ) = dom { 〈 𝑦 , 𝑥 〉 ∣ ( 𝑦 ∈ 𝐴 ∧ 𝑥 ∈ 𝐵 ) } |
3 | n0 | ⊢ ( 𝐵 ≠ ∅ ↔ ∃ 𝑥 𝑥 ∈ 𝐵 ) | |
4 | 3 | biimpi | ⊢ ( 𝐵 ≠ ∅ → ∃ 𝑥 𝑥 ∈ 𝐵 ) |
5 | 4 | ralrimivw | ⊢ ( 𝐵 ≠ ∅ → ∀ 𝑦 ∈ 𝐴 ∃ 𝑥 𝑥 ∈ 𝐵 ) |
6 | dmopab3 | ⊢ ( ∀ 𝑦 ∈ 𝐴 ∃ 𝑥 𝑥 ∈ 𝐵 ↔ dom { 〈 𝑦 , 𝑥 〉 ∣ ( 𝑦 ∈ 𝐴 ∧ 𝑥 ∈ 𝐵 ) } = 𝐴 ) | |
7 | 5 6 | sylib | ⊢ ( 𝐵 ≠ ∅ → dom { 〈 𝑦 , 𝑥 〉 ∣ ( 𝑦 ∈ 𝐴 ∧ 𝑥 ∈ 𝐵 ) } = 𝐴 ) |
8 | 2 7 | eqtrid | ⊢ ( 𝐵 ≠ ∅ → dom ( 𝐴 × 𝐵 ) = 𝐴 ) |