Metamath Proof Explorer


Theorem dmxpid

Description: The domain of a Cartesian square. (Contributed by NM, 28-Jul-1995)

Ref Expression
Assertion dmxpid dom ( 𝐴 × 𝐴 ) = 𝐴

Proof

Step Hyp Ref Expression
1 dm0 dom ∅ = ∅
2 xpeq1 ( 𝐴 = ∅ → ( 𝐴 × 𝐴 ) = ( ∅ × 𝐴 ) )
3 0xp ( ∅ × 𝐴 ) = ∅
4 2 3 eqtrdi ( 𝐴 = ∅ → ( 𝐴 × 𝐴 ) = ∅ )
5 4 dmeqd ( 𝐴 = ∅ → dom ( 𝐴 × 𝐴 ) = dom ∅ )
6 id ( 𝐴 = ∅ → 𝐴 = ∅ )
7 1 5 6 3eqtr4a ( 𝐴 = ∅ → dom ( 𝐴 × 𝐴 ) = 𝐴 )
8 dmxp ( 𝐴 ≠ ∅ → dom ( 𝐴 × 𝐴 ) = 𝐴 )
9 7 8 pm2.61ine dom ( 𝐴 × 𝐴 ) = 𝐴