| Step | Hyp | Ref | Expression | 
						
							| 1 |  | pm2.45 | ⊢ ( ¬  ( 𝜑  ∨  𝜓 )  →  ¬  𝜑 ) | 
						
							| 2 |  | imnan | ⊢ ( ( ¬  ( 𝜑  ∨  𝜓 )  →  ¬  𝜑 )  ↔  ¬  ( ¬  ( 𝜑  ∨  𝜓 )  ∧  𝜑 ) ) | 
						
							| 3 | 1 2 | mpbi | ⊢ ¬  ( ¬  ( 𝜑  ∨  𝜓 )  ∧  𝜑 ) | 
						
							| 4 | 3 | biorfri | ⊢ ( 𝜒  ↔  ( 𝜒  ∨  ( ¬  ( 𝜑  ∨  𝜓 )  ∧  𝜑 ) ) ) | 
						
							| 5 |  | orcom | ⊢ ( ( 𝜒  ∨  ( ¬  ( 𝜑  ∨  𝜓 )  ∧  𝜑 ) )  ↔  ( ( ¬  ( 𝜑  ∨  𝜓 )  ∧  𝜑 )  ∨  𝜒 ) ) | 
						
							| 6 |  | ordir | ⊢ ( ( ( ¬  ( 𝜑  ∨  𝜓 )  ∧  𝜑 )  ∨  𝜒 )  ↔  ( ( ¬  ( 𝜑  ∨  𝜓 )  ∨  𝜒 )  ∧  ( 𝜑  ∨  𝜒 ) ) ) | 
						
							| 7 | 4 5 6 | 3bitri | ⊢ ( 𝜒  ↔  ( ( ¬  ( 𝜑  ∨  𝜓 )  ∨  𝜒 )  ∧  ( 𝜑  ∨  𝜒 ) ) ) | 
						
							| 8 |  | pm4.45 | ⊢ ( 𝜒  ↔  ( 𝜒  ∧  ( 𝜒  ∨  𝜃 ) ) ) | 
						
							| 9 |  | anor | ⊢ ( ( 𝜒  ∧  ( 𝜒  ∨  𝜃 ) )  ↔  ¬  ( ¬  𝜒  ∨  ¬  ( 𝜒  ∨  𝜃 ) ) ) | 
						
							| 10 | 8 9 | bitri | ⊢ ( 𝜒  ↔  ¬  ( ¬  𝜒  ∨  ¬  ( 𝜒  ∨  𝜃 ) ) ) | 
						
							| 11 | 10 | orbi2i | ⊢ ( ( 𝜑  ∨  𝜒 )  ↔  ( 𝜑  ∨  ¬  ( ¬  𝜒  ∨  ¬  ( 𝜒  ∨  𝜃 ) ) ) ) | 
						
							| 12 | 11 | anbi2i | ⊢ ( ( ( ¬  ( 𝜑  ∨  𝜓 )  ∨  𝜒 )  ∧  ( 𝜑  ∨  𝜒 ) )  ↔  ( ( ¬  ( 𝜑  ∨  𝜓 )  ∨  𝜒 )  ∧  ( 𝜑  ∨  ¬  ( ¬  𝜒  ∨  ¬  ( 𝜒  ∨  𝜃 ) ) ) ) ) | 
						
							| 13 |  | anor | ⊢ ( ( ( ¬  ( 𝜑  ∨  𝜓 )  ∨  𝜒 )  ∧  ( 𝜑  ∨  ¬  ( ¬  𝜒  ∨  ¬  ( 𝜒  ∨  𝜃 ) ) ) )  ↔  ¬  ( ¬  ( ¬  ( 𝜑  ∨  𝜓 )  ∨  𝜒 )  ∨  ¬  ( 𝜑  ∨  ¬  ( ¬  𝜒  ∨  ¬  ( 𝜒  ∨  𝜃 ) ) ) ) ) | 
						
							| 14 | 7 12 13 | 3bitrri | ⊢ ( ¬  ( ¬  ( ¬  ( 𝜑  ∨  𝜓 )  ∨  𝜒 )  ∨  ¬  ( 𝜑  ∨  ¬  ( ¬  𝜒  ∨  ¬  ( 𝜒  ∨  𝜃 ) ) ) )  ↔  𝜒 ) |