Step |
Hyp |
Ref |
Expression |
1 |
|
pm2.45 |
⊢ ( ¬ ( 𝜑 ∨ 𝜓 ) → ¬ 𝜑 ) |
2 |
|
imnan |
⊢ ( ( ¬ ( 𝜑 ∨ 𝜓 ) → ¬ 𝜑 ) ↔ ¬ ( ¬ ( 𝜑 ∨ 𝜓 ) ∧ 𝜑 ) ) |
3 |
1 2
|
mpbi |
⊢ ¬ ( ¬ ( 𝜑 ∨ 𝜓 ) ∧ 𝜑 ) |
4 |
3
|
biorfi |
⊢ ( 𝜒 ↔ ( 𝜒 ∨ ( ¬ ( 𝜑 ∨ 𝜓 ) ∧ 𝜑 ) ) ) |
5 |
|
orcom |
⊢ ( ( 𝜒 ∨ ( ¬ ( 𝜑 ∨ 𝜓 ) ∧ 𝜑 ) ) ↔ ( ( ¬ ( 𝜑 ∨ 𝜓 ) ∧ 𝜑 ) ∨ 𝜒 ) ) |
6 |
|
ordir |
⊢ ( ( ( ¬ ( 𝜑 ∨ 𝜓 ) ∧ 𝜑 ) ∨ 𝜒 ) ↔ ( ( ¬ ( 𝜑 ∨ 𝜓 ) ∨ 𝜒 ) ∧ ( 𝜑 ∨ 𝜒 ) ) ) |
7 |
4 5 6
|
3bitri |
⊢ ( 𝜒 ↔ ( ( ¬ ( 𝜑 ∨ 𝜓 ) ∨ 𝜒 ) ∧ ( 𝜑 ∨ 𝜒 ) ) ) |
8 |
|
pm4.45 |
⊢ ( 𝜒 ↔ ( 𝜒 ∧ ( 𝜒 ∨ 𝜃 ) ) ) |
9 |
|
anor |
⊢ ( ( 𝜒 ∧ ( 𝜒 ∨ 𝜃 ) ) ↔ ¬ ( ¬ 𝜒 ∨ ¬ ( 𝜒 ∨ 𝜃 ) ) ) |
10 |
8 9
|
bitri |
⊢ ( 𝜒 ↔ ¬ ( ¬ 𝜒 ∨ ¬ ( 𝜒 ∨ 𝜃 ) ) ) |
11 |
10
|
orbi2i |
⊢ ( ( 𝜑 ∨ 𝜒 ) ↔ ( 𝜑 ∨ ¬ ( ¬ 𝜒 ∨ ¬ ( 𝜒 ∨ 𝜃 ) ) ) ) |
12 |
11
|
anbi2i |
⊢ ( ( ( ¬ ( 𝜑 ∨ 𝜓 ) ∨ 𝜒 ) ∧ ( 𝜑 ∨ 𝜒 ) ) ↔ ( ( ¬ ( 𝜑 ∨ 𝜓 ) ∨ 𝜒 ) ∧ ( 𝜑 ∨ ¬ ( ¬ 𝜒 ∨ ¬ ( 𝜒 ∨ 𝜃 ) ) ) ) ) |
13 |
|
anor |
⊢ ( ( ( ¬ ( 𝜑 ∨ 𝜓 ) ∨ 𝜒 ) ∧ ( 𝜑 ∨ ¬ ( ¬ 𝜒 ∨ ¬ ( 𝜒 ∨ 𝜃 ) ) ) ) ↔ ¬ ( ¬ ( ¬ ( 𝜑 ∨ 𝜓 ) ∨ 𝜒 ) ∨ ¬ ( 𝜑 ∨ ¬ ( ¬ 𝜒 ∨ ¬ ( 𝜒 ∨ 𝜃 ) ) ) ) ) |
14 |
7 12 13
|
3bitrri |
⊢ ( ¬ ( ¬ ( ¬ ( 𝜑 ∨ 𝜓 ) ∨ 𝜒 ) ∨ ¬ ( 𝜑 ∨ ¬ ( ¬ 𝜒 ∨ ¬ ( 𝜒 ∨ 𝜃 ) ) ) ) ↔ 𝜒 ) |