Step |
Hyp |
Ref |
Expression |
1 |
|
dnnumch.f |
⊢ 𝐹 = recs ( ( 𝑧 ∈ V ↦ ( 𝐺 ‘ ( 𝐴 ∖ ran 𝑧 ) ) ) ) |
2 |
|
dnnumch.a |
⊢ ( 𝜑 → 𝐴 ∈ 𝑉 ) |
3 |
|
dnnumch.g |
⊢ ( 𝜑 → ∀ 𝑦 ∈ 𝒫 𝐴 ( 𝑦 ≠ ∅ → ( 𝐺 ‘ 𝑦 ) ∈ 𝑦 ) ) |
4 |
1 2 3
|
dnnumch1 |
⊢ ( 𝜑 → ∃ 𝑥 ∈ On ( 𝐹 ↾ 𝑥 ) : 𝑥 –1-1-onto→ 𝐴 ) |
5 |
|
f1ofo |
⊢ ( ( 𝐹 ↾ 𝑥 ) : 𝑥 –1-1-onto→ 𝐴 → ( 𝐹 ↾ 𝑥 ) : 𝑥 –onto→ 𝐴 ) |
6 |
|
forn |
⊢ ( ( 𝐹 ↾ 𝑥 ) : 𝑥 –onto→ 𝐴 → ran ( 𝐹 ↾ 𝑥 ) = 𝐴 ) |
7 |
5 6
|
syl |
⊢ ( ( 𝐹 ↾ 𝑥 ) : 𝑥 –1-1-onto→ 𝐴 → ran ( 𝐹 ↾ 𝑥 ) = 𝐴 ) |
8 |
|
resss |
⊢ ( 𝐹 ↾ 𝑥 ) ⊆ 𝐹 |
9 |
|
rnss |
⊢ ( ( 𝐹 ↾ 𝑥 ) ⊆ 𝐹 → ran ( 𝐹 ↾ 𝑥 ) ⊆ ran 𝐹 ) |
10 |
8 9
|
mp1i |
⊢ ( ( 𝐹 ↾ 𝑥 ) : 𝑥 –1-1-onto→ 𝐴 → ran ( 𝐹 ↾ 𝑥 ) ⊆ ran 𝐹 ) |
11 |
7 10
|
eqsstrrd |
⊢ ( ( 𝐹 ↾ 𝑥 ) : 𝑥 –1-1-onto→ 𝐴 → 𝐴 ⊆ ran 𝐹 ) |
12 |
11
|
a1i |
⊢ ( 𝜑 → ( ( 𝐹 ↾ 𝑥 ) : 𝑥 –1-1-onto→ 𝐴 → 𝐴 ⊆ ran 𝐹 ) ) |
13 |
12
|
rexlimdvw |
⊢ ( 𝜑 → ( ∃ 𝑥 ∈ On ( 𝐹 ↾ 𝑥 ) : 𝑥 –1-1-onto→ 𝐴 → 𝐴 ⊆ ran 𝐹 ) ) |
14 |
4 13
|
mpd |
⊢ ( 𝜑 → 𝐴 ⊆ ran 𝐹 ) |