Step |
Hyp |
Ref |
Expression |
1 |
|
dnnumch.f |
⊢ 𝐹 = recs ( ( 𝑧 ∈ V ↦ ( 𝐺 ‘ ( 𝐴 ∖ ran 𝑧 ) ) ) ) |
2 |
|
dnnumch.a |
⊢ ( 𝜑 → 𝐴 ∈ 𝑉 ) |
3 |
|
dnnumch.g |
⊢ ( 𝜑 → ∀ 𝑦 ∈ 𝒫 𝐴 ( 𝑦 ≠ ∅ → ( 𝐺 ‘ 𝑦 ) ∈ 𝑦 ) ) |
4 |
|
cnvimass |
⊢ ( ◡ 𝐹 “ { 𝑥 } ) ⊆ dom 𝐹 |
5 |
1
|
tfr1 |
⊢ 𝐹 Fn On |
6 |
5
|
fndmi |
⊢ dom 𝐹 = On |
7 |
4 6
|
sseqtri |
⊢ ( ◡ 𝐹 “ { 𝑥 } ) ⊆ On |
8 |
1 2 3
|
dnnumch2 |
⊢ ( 𝜑 → 𝐴 ⊆ ran 𝐹 ) |
9 |
8
|
sselda |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → 𝑥 ∈ ran 𝐹 ) |
10 |
|
inisegn0 |
⊢ ( 𝑥 ∈ ran 𝐹 ↔ ( ◡ 𝐹 “ { 𝑥 } ) ≠ ∅ ) |
11 |
9 10
|
sylib |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ( ◡ 𝐹 “ { 𝑥 } ) ≠ ∅ ) |
12 |
|
oninton |
⊢ ( ( ( ◡ 𝐹 “ { 𝑥 } ) ⊆ On ∧ ( ◡ 𝐹 “ { 𝑥 } ) ≠ ∅ ) → ∩ ( ◡ 𝐹 “ { 𝑥 } ) ∈ On ) |
13 |
7 11 12
|
sylancr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ∩ ( ◡ 𝐹 “ { 𝑥 } ) ∈ On ) |
14 |
13
|
fmpttd |
⊢ ( 𝜑 → ( 𝑥 ∈ 𝐴 ↦ ∩ ( ◡ 𝐹 “ { 𝑥 } ) ) : 𝐴 ⟶ On ) |
15 |
1 2 3
|
dnnumch3lem |
⊢ ( ( 𝜑 ∧ 𝑣 ∈ 𝐴 ) → ( ( 𝑥 ∈ 𝐴 ↦ ∩ ( ◡ 𝐹 “ { 𝑥 } ) ) ‘ 𝑣 ) = ∩ ( ◡ 𝐹 “ { 𝑣 } ) ) |
16 |
15
|
adantrr |
⊢ ( ( 𝜑 ∧ ( 𝑣 ∈ 𝐴 ∧ 𝑤 ∈ 𝐴 ) ) → ( ( 𝑥 ∈ 𝐴 ↦ ∩ ( ◡ 𝐹 “ { 𝑥 } ) ) ‘ 𝑣 ) = ∩ ( ◡ 𝐹 “ { 𝑣 } ) ) |
17 |
1 2 3
|
dnnumch3lem |
⊢ ( ( 𝜑 ∧ 𝑤 ∈ 𝐴 ) → ( ( 𝑥 ∈ 𝐴 ↦ ∩ ( ◡ 𝐹 “ { 𝑥 } ) ) ‘ 𝑤 ) = ∩ ( ◡ 𝐹 “ { 𝑤 } ) ) |
18 |
17
|
adantrl |
⊢ ( ( 𝜑 ∧ ( 𝑣 ∈ 𝐴 ∧ 𝑤 ∈ 𝐴 ) ) → ( ( 𝑥 ∈ 𝐴 ↦ ∩ ( ◡ 𝐹 “ { 𝑥 } ) ) ‘ 𝑤 ) = ∩ ( ◡ 𝐹 “ { 𝑤 } ) ) |
19 |
16 18
|
eqeq12d |
⊢ ( ( 𝜑 ∧ ( 𝑣 ∈ 𝐴 ∧ 𝑤 ∈ 𝐴 ) ) → ( ( ( 𝑥 ∈ 𝐴 ↦ ∩ ( ◡ 𝐹 “ { 𝑥 } ) ) ‘ 𝑣 ) = ( ( 𝑥 ∈ 𝐴 ↦ ∩ ( ◡ 𝐹 “ { 𝑥 } ) ) ‘ 𝑤 ) ↔ ∩ ( ◡ 𝐹 “ { 𝑣 } ) = ∩ ( ◡ 𝐹 “ { 𝑤 } ) ) ) |
20 |
|
fveq2 |
⊢ ( ∩ ( ◡ 𝐹 “ { 𝑣 } ) = ∩ ( ◡ 𝐹 “ { 𝑤 } ) → ( 𝐹 ‘ ∩ ( ◡ 𝐹 “ { 𝑣 } ) ) = ( 𝐹 ‘ ∩ ( ◡ 𝐹 “ { 𝑤 } ) ) ) |
21 |
20
|
adantl |
⊢ ( ( ( 𝜑 ∧ ( 𝑣 ∈ 𝐴 ∧ 𝑤 ∈ 𝐴 ) ) ∧ ∩ ( ◡ 𝐹 “ { 𝑣 } ) = ∩ ( ◡ 𝐹 “ { 𝑤 } ) ) → ( 𝐹 ‘ ∩ ( ◡ 𝐹 “ { 𝑣 } ) ) = ( 𝐹 ‘ ∩ ( ◡ 𝐹 “ { 𝑤 } ) ) ) |
22 |
|
cnvimass |
⊢ ( ◡ 𝐹 “ { 𝑣 } ) ⊆ dom 𝐹 |
23 |
22 6
|
sseqtri |
⊢ ( ◡ 𝐹 “ { 𝑣 } ) ⊆ On |
24 |
8
|
sselda |
⊢ ( ( 𝜑 ∧ 𝑣 ∈ 𝐴 ) → 𝑣 ∈ ran 𝐹 ) |
25 |
|
inisegn0 |
⊢ ( 𝑣 ∈ ran 𝐹 ↔ ( ◡ 𝐹 “ { 𝑣 } ) ≠ ∅ ) |
26 |
24 25
|
sylib |
⊢ ( ( 𝜑 ∧ 𝑣 ∈ 𝐴 ) → ( ◡ 𝐹 “ { 𝑣 } ) ≠ ∅ ) |
27 |
|
onint |
⊢ ( ( ( ◡ 𝐹 “ { 𝑣 } ) ⊆ On ∧ ( ◡ 𝐹 “ { 𝑣 } ) ≠ ∅ ) → ∩ ( ◡ 𝐹 “ { 𝑣 } ) ∈ ( ◡ 𝐹 “ { 𝑣 } ) ) |
28 |
23 26 27
|
sylancr |
⊢ ( ( 𝜑 ∧ 𝑣 ∈ 𝐴 ) → ∩ ( ◡ 𝐹 “ { 𝑣 } ) ∈ ( ◡ 𝐹 “ { 𝑣 } ) ) |
29 |
|
fniniseg |
⊢ ( 𝐹 Fn On → ( ∩ ( ◡ 𝐹 “ { 𝑣 } ) ∈ ( ◡ 𝐹 “ { 𝑣 } ) ↔ ( ∩ ( ◡ 𝐹 “ { 𝑣 } ) ∈ On ∧ ( 𝐹 ‘ ∩ ( ◡ 𝐹 “ { 𝑣 } ) ) = 𝑣 ) ) ) |
30 |
5 29
|
ax-mp |
⊢ ( ∩ ( ◡ 𝐹 “ { 𝑣 } ) ∈ ( ◡ 𝐹 “ { 𝑣 } ) ↔ ( ∩ ( ◡ 𝐹 “ { 𝑣 } ) ∈ On ∧ ( 𝐹 ‘ ∩ ( ◡ 𝐹 “ { 𝑣 } ) ) = 𝑣 ) ) |
31 |
30
|
simprbi |
⊢ ( ∩ ( ◡ 𝐹 “ { 𝑣 } ) ∈ ( ◡ 𝐹 “ { 𝑣 } ) → ( 𝐹 ‘ ∩ ( ◡ 𝐹 “ { 𝑣 } ) ) = 𝑣 ) |
32 |
28 31
|
syl |
⊢ ( ( 𝜑 ∧ 𝑣 ∈ 𝐴 ) → ( 𝐹 ‘ ∩ ( ◡ 𝐹 “ { 𝑣 } ) ) = 𝑣 ) |
33 |
32
|
adantrr |
⊢ ( ( 𝜑 ∧ ( 𝑣 ∈ 𝐴 ∧ 𝑤 ∈ 𝐴 ) ) → ( 𝐹 ‘ ∩ ( ◡ 𝐹 “ { 𝑣 } ) ) = 𝑣 ) |
34 |
33
|
adantr |
⊢ ( ( ( 𝜑 ∧ ( 𝑣 ∈ 𝐴 ∧ 𝑤 ∈ 𝐴 ) ) ∧ ∩ ( ◡ 𝐹 “ { 𝑣 } ) = ∩ ( ◡ 𝐹 “ { 𝑤 } ) ) → ( 𝐹 ‘ ∩ ( ◡ 𝐹 “ { 𝑣 } ) ) = 𝑣 ) |
35 |
|
cnvimass |
⊢ ( ◡ 𝐹 “ { 𝑤 } ) ⊆ dom 𝐹 |
36 |
35 6
|
sseqtri |
⊢ ( ◡ 𝐹 “ { 𝑤 } ) ⊆ On |
37 |
8
|
sselda |
⊢ ( ( 𝜑 ∧ 𝑤 ∈ 𝐴 ) → 𝑤 ∈ ran 𝐹 ) |
38 |
|
inisegn0 |
⊢ ( 𝑤 ∈ ran 𝐹 ↔ ( ◡ 𝐹 “ { 𝑤 } ) ≠ ∅ ) |
39 |
37 38
|
sylib |
⊢ ( ( 𝜑 ∧ 𝑤 ∈ 𝐴 ) → ( ◡ 𝐹 “ { 𝑤 } ) ≠ ∅ ) |
40 |
|
onint |
⊢ ( ( ( ◡ 𝐹 “ { 𝑤 } ) ⊆ On ∧ ( ◡ 𝐹 “ { 𝑤 } ) ≠ ∅ ) → ∩ ( ◡ 𝐹 “ { 𝑤 } ) ∈ ( ◡ 𝐹 “ { 𝑤 } ) ) |
41 |
36 39 40
|
sylancr |
⊢ ( ( 𝜑 ∧ 𝑤 ∈ 𝐴 ) → ∩ ( ◡ 𝐹 “ { 𝑤 } ) ∈ ( ◡ 𝐹 “ { 𝑤 } ) ) |
42 |
|
fniniseg |
⊢ ( 𝐹 Fn On → ( ∩ ( ◡ 𝐹 “ { 𝑤 } ) ∈ ( ◡ 𝐹 “ { 𝑤 } ) ↔ ( ∩ ( ◡ 𝐹 “ { 𝑤 } ) ∈ On ∧ ( 𝐹 ‘ ∩ ( ◡ 𝐹 “ { 𝑤 } ) ) = 𝑤 ) ) ) |
43 |
5 42
|
ax-mp |
⊢ ( ∩ ( ◡ 𝐹 “ { 𝑤 } ) ∈ ( ◡ 𝐹 “ { 𝑤 } ) ↔ ( ∩ ( ◡ 𝐹 “ { 𝑤 } ) ∈ On ∧ ( 𝐹 ‘ ∩ ( ◡ 𝐹 “ { 𝑤 } ) ) = 𝑤 ) ) |
44 |
43
|
simprbi |
⊢ ( ∩ ( ◡ 𝐹 “ { 𝑤 } ) ∈ ( ◡ 𝐹 “ { 𝑤 } ) → ( 𝐹 ‘ ∩ ( ◡ 𝐹 “ { 𝑤 } ) ) = 𝑤 ) |
45 |
41 44
|
syl |
⊢ ( ( 𝜑 ∧ 𝑤 ∈ 𝐴 ) → ( 𝐹 ‘ ∩ ( ◡ 𝐹 “ { 𝑤 } ) ) = 𝑤 ) |
46 |
45
|
adantrl |
⊢ ( ( 𝜑 ∧ ( 𝑣 ∈ 𝐴 ∧ 𝑤 ∈ 𝐴 ) ) → ( 𝐹 ‘ ∩ ( ◡ 𝐹 “ { 𝑤 } ) ) = 𝑤 ) |
47 |
46
|
adantr |
⊢ ( ( ( 𝜑 ∧ ( 𝑣 ∈ 𝐴 ∧ 𝑤 ∈ 𝐴 ) ) ∧ ∩ ( ◡ 𝐹 “ { 𝑣 } ) = ∩ ( ◡ 𝐹 “ { 𝑤 } ) ) → ( 𝐹 ‘ ∩ ( ◡ 𝐹 “ { 𝑤 } ) ) = 𝑤 ) |
48 |
21 34 47
|
3eqtr3d |
⊢ ( ( ( 𝜑 ∧ ( 𝑣 ∈ 𝐴 ∧ 𝑤 ∈ 𝐴 ) ) ∧ ∩ ( ◡ 𝐹 “ { 𝑣 } ) = ∩ ( ◡ 𝐹 “ { 𝑤 } ) ) → 𝑣 = 𝑤 ) |
49 |
48
|
ex |
⊢ ( ( 𝜑 ∧ ( 𝑣 ∈ 𝐴 ∧ 𝑤 ∈ 𝐴 ) ) → ( ∩ ( ◡ 𝐹 “ { 𝑣 } ) = ∩ ( ◡ 𝐹 “ { 𝑤 } ) → 𝑣 = 𝑤 ) ) |
50 |
19 49
|
sylbid |
⊢ ( ( 𝜑 ∧ ( 𝑣 ∈ 𝐴 ∧ 𝑤 ∈ 𝐴 ) ) → ( ( ( 𝑥 ∈ 𝐴 ↦ ∩ ( ◡ 𝐹 “ { 𝑥 } ) ) ‘ 𝑣 ) = ( ( 𝑥 ∈ 𝐴 ↦ ∩ ( ◡ 𝐹 “ { 𝑥 } ) ) ‘ 𝑤 ) → 𝑣 = 𝑤 ) ) |
51 |
50
|
ralrimivva |
⊢ ( 𝜑 → ∀ 𝑣 ∈ 𝐴 ∀ 𝑤 ∈ 𝐴 ( ( ( 𝑥 ∈ 𝐴 ↦ ∩ ( ◡ 𝐹 “ { 𝑥 } ) ) ‘ 𝑣 ) = ( ( 𝑥 ∈ 𝐴 ↦ ∩ ( ◡ 𝐹 “ { 𝑥 } ) ) ‘ 𝑤 ) → 𝑣 = 𝑤 ) ) |
52 |
|
dff13 |
⊢ ( ( 𝑥 ∈ 𝐴 ↦ ∩ ( ◡ 𝐹 “ { 𝑥 } ) ) : 𝐴 –1-1→ On ↔ ( ( 𝑥 ∈ 𝐴 ↦ ∩ ( ◡ 𝐹 “ { 𝑥 } ) ) : 𝐴 ⟶ On ∧ ∀ 𝑣 ∈ 𝐴 ∀ 𝑤 ∈ 𝐴 ( ( ( 𝑥 ∈ 𝐴 ↦ ∩ ( ◡ 𝐹 “ { 𝑥 } ) ) ‘ 𝑣 ) = ( ( 𝑥 ∈ 𝐴 ↦ ∩ ( ◡ 𝐹 “ { 𝑥 } ) ) ‘ 𝑤 ) → 𝑣 = 𝑤 ) ) ) |
53 |
14 51 52
|
sylanbrc |
⊢ ( 𝜑 → ( 𝑥 ∈ 𝐴 ↦ ∩ ( ◡ 𝐹 “ { 𝑥 } ) ) : 𝐴 –1-1→ On ) |