Step |
Hyp |
Ref |
Expression |
1 |
|
dnnumch.f |
⊢ 𝐹 = recs ( ( 𝑧 ∈ V ↦ ( 𝐺 ‘ ( 𝐴 ∖ ran 𝑧 ) ) ) ) |
2 |
|
dnnumch.a |
⊢ ( 𝜑 → 𝐴 ∈ 𝑉 ) |
3 |
|
dnnumch.g |
⊢ ( 𝜑 → ∀ 𝑦 ∈ 𝒫 𝐴 ( 𝑦 ≠ ∅ → ( 𝐺 ‘ 𝑦 ) ∈ 𝑦 ) ) |
4 |
|
eqid |
⊢ ( 𝑥 ∈ 𝐴 ↦ ∩ ( ◡ 𝐹 “ { 𝑥 } ) ) = ( 𝑥 ∈ 𝐴 ↦ ∩ ( ◡ 𝐹 “ { 𝑥 } ) ) |
5 |
|
sneq |
⊢ ( 𝑥 = 𝑤 → { 𝑥 } = { 𝑤 } ) |
6 |
5
|
imaeq2d |
⊢ ( 𝑥 = 𝑤 → ( ◡ 𝐹 “ { 𝑥 } ) = ( ◡ 𝐹 “ { 𝑤 } ) ) |
7 |
6
|
inteqd |
⊢ ( 𝑥 = 𝑤 → ∩ ( ◡ 𝐹 “ { 𝑥 } ) = ∩ ( ◡ 𝐹 “ { 𝑤 } ) ) |
8 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑤 ∈ 𝐴 ) → 𝑤 ∈ 𝐴 ) |
9 |
|
cnvimass |
⊢ ( ◡ 𝐹 “ { 𝑤 } ) ⊆ dom 𝐹 |
10 |
1
|
tfr1 |
⊢ 𝐹 Fn On |
11 |
10
|
fndmi |
⊢ dom 𝐹 = On |
12 |
9 11
|
sseqtri |
⊢ ( ◡ 𝐹 “ { 𝑤 } ) ⊆ On |
13 |
1 2 3
|
dnnumch2 |
⊢ ( 𝜑 → 𝐴 ⊆ ran 𝐹 ) |
14 |
13
|
sselda |
⊢ ( ( 𝜑 ∧ 𝑤 ∈ 𝐴 ) → 𝑤 ∈ ran 𝐹 ) |
15 |
|
inisegn0 |
⊢ ( 𝑤 ∈ ran 𝐹 ↔ ( ◡ 𝐹 “ { 𝑤 } ) ≠ ∅ ) |
16 |
14 15
|
sylib |
⊢ ( ( 𝜑 ∧ 𝑤 ∈ 𝐴 ) → ( ◡ 𝐹 “ { 𝑤 } ) ≠ ∅ ) |
17 |
|
oninton |
⊢ ( ( ( ◡ 𝐹 “ { 𝑤 } ) ⊆ On ∧ ( ◡ 𝐹 “ { 𝑤 } ) ≠ ∅ ) → ∩ ( ◡ 𝐹 “ { 𝑤 } ) ∈ On ) |
18 |
12 16 17
|
sylancr |
⊢ ( ( 𝜑 ∧ 𝑤 ∈ 𝐴 ) → ∩ ( ◡ 𝐹 “ { 𝑤 } ) ∈ On ) |
19 |
4 7 8 18
|
fvmptd3 |
⊢ ( ( 𝜑 ∧ 𝑤 ∈ 𝐴 ) → ( ( 𝑥 ∈ 𝐴 ↦ ∩ ( ◡ 𝐹 “ { 𝑥 } ) ) ‘ 𝑤 ) = ∩ ( ◡ 𝐹 “ { 𝑤 } ) ) |