| Step |
Hyp |
Ref |
Expression |
| 1 |
|
dnsconst.1 |
⊢ 𝑋 = ∪ 𝐽 |
| 2 |
|
dnsconst.2 |
⊢ 𝑌 = ∪ 𝐾 |
| 3 |
|
simplr |
⊢ ( ( ( 𝐾 ∈ Fre ∧ 𝐹 ∈ ( 𝐽 Cn 𝐾 ) ) ∧ ( 𝑃 ∈ 𝑌 ∧ 𝐴 ⊆ ( ◡ 𝐹 “ { 𝑃 } ) ∧ ( ( cls ‘ 𝐽 ) ‘ 𝐴 ) = 𝑋 ) ) → 𝐹 ∈ ( 𝐽 Cn 𝐾 ) ) |
| 4 |
1 2
|
cnf |
⊢ ( 𝐹 ∈ ( 𝐽 Cn 𝐾 ) → 𝐹 : 𝑋 ⟶ 𝑌 ) |
| 5 |
|
ffn |
⊢ ( 𝐹 : 𝑋 ⟶ 𝑌 → 𝐹 Fn 𝑋 ) |
| 6 |
3 4 5
|
3syl |
⊢ ( ( ( 𝐾 ∈ Fre ∧ 𝐹 ∈ ( 𝐽 Cn 𝐾 ) ) ∧ ( 𝑃 ∈ 𝑌 ∧ 𝐴 ⊆ ( ◡ 𝐹 “ { 𝑃 } ) ∧ ( ( cls ‘ 𝐽 ) ‘ 𝐴 ) = 𝑋 ) ) → 𝐹 Fn 𝑋 ) |
| 7 |
|
simpr3 |
⊢ ( ( ( 𝐾 ∈ Fre ∧ 𝐹 ∈ ( 𝐽 Cn 𝐾 ) ) ∧ ( 𝑃 ∈ 𝑌 ∧ 𝐴 ⊆ ( ◡ 𝐹 “ { 𝑃 } ) ∧ ( ( cls ‘ 𝐽 ) ‘ 𝐴 ) = 𝑋 ) ) → ( ( cls ‘ 𝐽 ) ‘ 𝐴 ) = 𝑋 ) |
| 8 |
|
simpll |
⊢ ( ( ( 𝐾 ∈ Fre ∧ 𝐹 ∈ ( 𝐽 Cn 𝐾 ) ) ∧ ( 𝑃 ∈ 𝑌 ∧ 𝐴 ⊆ ( ◡ 𝐹 “ { 𝑃 } ) ∧ ( ( cls ‘ 𝐽 ) ‘ 𝐴 ) = 𝑋 ) ) → 𝐾 ∈ Fre ) |
| 9 |
|
simpr1 |
⊢ ( ( ( 𝐾 ∈ Fre ∧ 𝐹 ∈ ( 𝐽 Cn 𝐾 ) ) ∧ ( 𝑃 ∈ 𝑌 ∧ 𝐴 ⊆ ( ◡ 𝐹 “ { 𝑃 } ) ∧ ( ( cls ‘ 𝐽 ) ‘ 𝐴 ) = 𝑋 ) ) → 𝑃 ∈ 𝑌 ) |
| 10 |
2
|
t1sncld |
⊢ ( ( 𝐾 ∈ Fre ∧ 𝑃 ∈ 𝑌 ) → { 𝑃 } ∈ ( Clsd ‘ 𝐾 ) ) |
| 11 |
8 9 10
|
syl2anc |
⊢ ( ( ( 𝐾 ∈ Fre ∧ 𝐹 ∈ ( 𝐽 Cn 𝐾 ) ) ∧ ( 𝑃 ∈ 𝑌 ∧ 𝐴 ⊆ ( ◡ 𝐹 “ { 𝑃 } ) ∧ ( ( cls ‘ 𝐽 ) ‘ 𝐴 ) = 𝑋 ) ) → { 𝑃 } ∈ ( Clsd ‘ 𝐾 ) ) |
| 12 |
|
cnclima |
⊢ ( ( 𝐹 ∈ ( 𝐽 Cn 𝐾 ) ∧ { 𝑃 } ∈ ( Clsd ‘ 𝐾 ) ) → ( ◡ 𝐹 “ { 𝑃 } ) ∈ ( Clsd ‘ 𝐽 ) ) |
| 13 |
3 11 12
|
syl2anc |
⊢ ( ( ( 𝐾 ∈ Fre ∧ 𝐹 ∈ ( 𝐽 Cn 𝐾 ) ) ∧ ( 𝑃 ∈ 𝑌 ∧ 𝐴 ⊆ ( ◡ 𝐹 “ { 𝑃 } ) ∧ ( ( cls ‘ 𝐽 ) ‘ 𝐴 ) = 𝑋 ) ) → ( ◡ 𝐹 “ { 𝑃 } ) ∈ ( Clsd ‘ 𝐽 ) ) |
| 14 |
|
simpr2 |
⊢ ( ( ( 𝐾 ∈ Fre ∧ 𝐹 ∈ ( 𝐽 Cn 𝐾 ) ) ∧ ( 𝑃 ∈ 𝑌 ∧ 𝐴 ⊆ ( ◡ 𝐹 “ { 𝑃 } ) ∧ ( ( cls ‘ 𝐽 ) ‘ 𝐴 ) = 𝑋 ) ) → 𝐴 ⊆ ( ◡ 𝐹 “ { 𝑃 } ) ) |
| 15 |
1
|
clsss2 |
⊢ ( ( ( ◡ 𝐹 “ { 𝑃 } ) ∈ ( Clsd ‘ 𝐽 ) ∧ 𝐴 ⊆ ( ◡ 𝐹 “ { 𝑃 } ) ) → ( ( cls ‘ 𝐽 ) ‘ 𝐴 ) ⊆ ( ◡ 𝐹 “ { 𝑃 } ) ) |
| 16 |
13 14 15
|
syl2anc |
⊢ ( ( ( 𝐾 ∈ Fre ∧ 𝐹 ∈ ( 𝐽 Cn 𝐾 ) ) ∧ ( 𝑃 ∈ 𝑌 ∧ 𝐴 ⊆ ( ◡ 𝐹 “ { 𝑃 } ) ∧ ( ( cls ‘ 𝐽 ) ‘ 𝐴 ) = 𝑋 ) ) → ( ( cls ‘ 𝐽 ) ‘ 𝐴 ) ⊆ ( ◡ 𝐹 “ { 𝑃 } ) ) |
| 17 |
7 16
|
eqsstrrd |
⊢ ( ( ( 𝐾 ∈ Fre ∧ 𝐹 ∈ ( 𝐽 Cn 𝐾 ) ) ∧ ( 𝑃 ∈ 𝑌 ∧ 𝐴 ⊆ ( ◡ 𝐹 “ { 𝑃 } ) ∧ ( ( cls ‘ 𝐽 ) ‘ 𝐴 ) = 𝑋 ) ) → 𝑋 ⊆ ( ◡ 𝐹 “ { 𝑃 } ) ) |
| 18 |
|
fconst3 |
⊢ ( 𝐹 : 𝑋 ⟶ { 𝑃 } ↔ ( 𝐹 Fn 𝑋 ∧ 𝑋 ⊆ ( ◡ 𝐹 “ { 𝑃 } ) ) ) |
| 19 |
6 17 18
|
sylanbrc |
⊢ ( ( ( 𝐾 ∈ Fre ∧ 𝐹 ∈ ( 𝐽 Cn 𝐾 ) ) ∧ ( 𝑃 ∈ 𝑌 ∧ 𝐴 ⊆ ( ◡ 𝐹 “ { 𝑃 } ) ∧ ( ( cls ‘ 𝐽 ) ‘ 𝐴 ) = 𝑋 ) ) → 𝐹 : 𝑋 ⟶ { 𝑃 } ) |