Step |
Hyp |
Ref |
Expression |
1 |
|
dnnumch.f |
⊢ 𝐹 = recs ( ( 𝑧 ∈ V ↦ ( 𝐺 ‘ ( 𝐴 ∖ ran 𝑧 ) ) ) ) |
2 |
|
dnnumch.a |
⊢ ( 𝜑 → 𝐴 ∈ 𝑉 ) |
3 |
|
dnnumch.g |
⊢ ( 𝜑 → ∀ 𝑦 ∈ 𝒫 𝐴 ( 𝑦 ≠ ∅ → ( 𝐺 ‘ 𝑦 ) ∈ 𝑦 ) ) |
4 |
|
dnwech.h |
⊢ 𝐻 = { 〈 𝑣 , 𝑤 〉 ∣ ∩ ( ◡ 𝐹 “ { 𝑣 } ) ∈ ∩ ( ◡ 𝐹 “ { 𝑤 } ) } |
5 |
1 2 3
|
dnnumch3 |
⊢ ( 𝜑 → ( 𝑥 ∈ 𝐴 ↦ ∩ ( ◡ 𝐹 “ { 𝑥 } ) ) : 𝐴 –1-1→ On ) |
6 |
|
f1f1orn |
⊢ ( ( 𝑥 ∈ 𝐴 ↦ ∩ ( ◡ 𝐹 “ { 𝑥 } ) ) : 𝐴 –1-1→ On → ( 𝑥 ∈ 𝐴 ↦ ∩ ( ◡ 𝐹 “ { 𝑥 } ) ) : 𝐴 –1-1-onto→ ran ( 𝑥 ∈ 𝐴 ↦ ∩ ( ◡ 𝐹 “ { 𝑥 } ) ) ) |
7 |
5 6
|
syl |
⊢ ( 𝜑 → ( 𝑥 ∈ 𝐴 ↦ ∩ ( ◡ 𝐹 “ { 𝑥 } ) ) : 𝐴 –1-1-onto→ ran ( 𝑥 ∈ 𝐴 ↦ ∩ ( ◡ 𝐹 “ { 𝑥 } ) ) ) |
8 |
|
f1f |
⊢ ( ( 𝑥 ∈ 𝐴 ↦ ∩ ( ◡ 𝐹 “ { 𝑥 } ) ) : 𝐴 –1-1→ On → ( 𝑥 ∈ 𝐴 ↦ ∩ ( ◡ 𝐹 “ { 𝑥 } ) ) : 𝐴 ⟶ On ) |
9 |
|
frn |
⊢ ( ( 𝑥 ∈ 𝐴 ↦ ∩ ( ◡ 𝐹 “ { 𝑥 } ) ) : 𝐴 ⟶ On → ran ( 𝑥 ∈ 𝐴 ↦ ∩ ( ◡ 𝐹 “ { 𝑥 } ) ) ⊆ On ) |
10 |
5 8 9
|
3syl |
⊢ ( 𝜑 → ran ( 𝑥 ∈ 𝐴 ↦ ∩ ( ◡ 𝐹 “ { 𝑥 } ) ) ⊆ On ) |
11 |
|
epweon |
⊢ E We On |
12 |
|
wess |
⊢ ( ran ( 𝑥 ∈ 𝐴 ↦ ∩ ( ◡ 𝐹 “ { 𝑥 } ) ) ⊆ On → ( E We On → E We ran ( 𝑥 ∈ 𝐴 ↦ ∩ ( ◡ 𝐹 “ { 𝑥 } ) ) ) ) |
13 |
10 11 12
|
mpisyl |
⊢ ( 𝜑 → E We ran ( 𝑥 ∈ 𝐴 ↦ ∩ ( ◡ 𝐹 “ { 𝑥 } ) ) ) |
14 |
|
eqid |
⊢ { 〈 𝑣 , 𝑤 〉 ∣ ( ( 𝑥 ∈ 𝐴 ↦ ∩ ( ◡ 𝐹 “ { 𝑥 } ) ) ‘ 𝑣 ) E ( ( 𝑥 ∈ 𝐴 ↦ ∩ ( ◡ 𝐹 “ { 𝑥 } ) ) ‘ 𝑤 ) } = { 〈 𝑣 , 𝑤 〉 ∣ ( ( 𝑥 ∈ 𝐴 ↦ ∩ ( ◡ 𝐹 “ { 𝑥 } ) ) ‘ 𝑣 ) E ( ( 𝑥 ∈ 𝐴 ↦ ∩ ( ◡ 𝐹 “ { 𝑥 } ) ) ‘ 𝑤 ) } |
15 |
14
|
f1owe |
⊢ ( ( 𝑥 ∈ 𝐴 ↦ ∩ ( ◡ 𝐹 “ { 𝑥 } ) ) : 𝐴 –1-1-onto→ ran ( 𝑥 ∈ 𝐴 ↦ ∩ ( ◡ 𝐹 “ { 𝑥 } ) ) → ( E We ran ( 𝑥 ∈ 𝐴 ↦ ∩ ( ◡ 𝐹 “ { 𝑥 } ) ) → { 〈 𝑣 , 𝑤 〉 ∣ ( ( 𝑥 ∈ 𝐴 ↦ ∩ ( ◡ 𝐹 “ { 𝑥 } ) ) ‘ 𝑣 ) E ( ( 𝑥 ∈ 𝐴 ↦ ∩ ( ◡ 𝐹 “ { 𝑥 } ) ) ‘ 𝑤 ) } We 𝐴 ) ) |
16 |
7 13 15
|
sylc |
⊢ ( 𝜑 → { 〈 𝑣 , 𝑤 〉 ∣ ( ( 𝑥 ∈ 𝐴 ↦ ∩ ( ◡ 𝐹 “ { 𝑥 } ) ) ‘ 𝑣 ) E ( ( 𝑥 ∈ 𝐴 ↦ ∩ ( ◡ 𝐹 “ { 𝑥 } ) ) ‘ 𝑤 ) } We 𝐴 ) |
17 |
|
fvex |
⊢ ( ( 𝑥 ∈ 𝐴 ↦ ∩ ( ◡ 𝐹 “ { 𝑥 } ) ) ‘ 𝑤 ) ∈ V |
18 |
17
|
epeli |
⊢ ( ( ( 𝑥 ∈ 𝐴 ↦ ∩ ( ◡ 𝐹 “ { 𝑥 } ) ) ‘ 𝑣 ) E ( ( 𝑥 ∈ 𝐴 ↦ ∩ ( ◡ 𝐹 “ { 𝑥 } ) ) ‘ 𝑤 ) ↔ ( ( 𝑥 ∈ 𝐴 ↦ ∩ ( ◡ 𝐹 “ { 𝑥 } ) ) ‘ 𝑣 ) ∈ ( ( 𝑥 ∈ 𝐴 ↦ ∩ ( ◡ 𝐹 “ { 𝑥 } ) ) ‘ 𝑤 ) ) |
19 |
1 2 3
|
dnnumch3lem |
⊢ ( ( 𝜑 ∧ 𝑣 ∈ 𝐴 ) → ( ( 𝑥 ∈ 𝐴 ↦ ∩ ( ◡ 𝐹 “ { 𝑥 } ) ) ‘ 𝑣 ) = ∩ ( ◡ 𝐹 “ { 𝑣 } ) ) |
20 |
19
|
adantrr |
⊢ ( ( 𝜑 ∧ ( 𝑣 ∈ 𝐴 ∧ 𝑤 ∈ 𝐴 ) ) → ( ( 𝑥 ∈ 𝐴 ↦ ∩ ( ◡ 𝐹 “ { 𝑥 } ) ) ‘ 𝑣 ) = ∩ ( ◡ 𝐹 “ { 𝑣 } ) ) |
21 |
1 2 3
|
dnnumch3lem |
⊢ ( ( 𝜑 ∧ 𝑤 ∈ 𝐴 ) → ( ( 𝑥 ∈ 𝐴 ↦ ∩ ( ◡ 𝐹 “ { 𝑥 } ) ) ‘ 𝑤 ) = ∩ ( ◡ 𝐹 “ { 𝑤 } ) ) |
22 |
21
|
adantrl |
⊢ ( ( 𝜑 ∧ ( 𝑣 ∈ 𝐴 ∧ 𝑤 ∈ 𝐴 ) ) → ( ( 𝑥 ∈ 𝐴 ↦ ∩ ( ◡ 𝐹 “ { 𝑥 } ) ) ‘ 𝑤 ) = ∩ ( ◡ 𝐹 “ { 𝑤 } ) ) |
23 |
20 22
|
eleq12d |
⊢ ( ( 𝜑 ∧ ( 𝑣 ∈ 𝐴 ∧ 𝑤 ∈ 𝐴 ) ) → ( ( ( 𝑥 ∈ 𝐴 ↦ ∩ ( ◡ 𝐹 “ { 𝑥 } ) ) ‘ 𝑣 ) ∈ ( ( 𝑥 ∈ 𝐴 ↦ ∩ ( ◡ 𝐹 “ { 𝑥 } ) ) ‘ 𝑤 ) ↔ ∩ ( ◡ 𝐹 “ { 𝑣 } ) ∈ ∩ ( ◡ 𝐹 “ { 𝑤 } ) ) ) |
24 |
18 23
|
bitr2id |
⊢ ( ( 𝜑 ∧ ( 𝑣 ∈ 𝐴 ∧ 𝑤 ∈ 𝐴 ) ) → ( ∩ ( ◡ 𝐹 “ { 𝑣 } ) ∈ ∩ ( ◡ 𝐹 “ { 𝑤 } ) ↔ ( ( 𝑥 ∈ 𝐴 ↦ ∩ ( ◡ 𝐹 “ { 𝑥 } ) ) ‘ 𝑣 ) E ( ( 𝑥 ∈ 𝐴 ↦ ∩ ( ◡ 𝐹 “ { 𝑥 } ) ) ‘ 𝑤 ) ) ) |
25 |
24
|
pm5.32da |
⊢ ( 𝜑 → ( ( ( 𝑣 ∈ 𝐴 ∧ 𝑤 ∈ 𝐴 ) ∧ ∩ ( ◡ 𝐹 “ { 𝑣 } ) ∈ ∩ ( ◡ 𝐹 “ { 𝑤 } ) ) ↔ ( ( 𝑣 ∈ 𝐴 ∧ 𝑤 ∈ 𝐴 ) ∧ ( ( 𝑥 ∈ 𝐴 ↦ ∩ ( ◡ 𝐹 “ { 𝑥 } ) ) ‘ 𝑣 ) E ( ( 𝑥 ∈ 𝐴 ↦ ∩ ( ◡ 𝐹 “ { 𝑥 } ) ) ‘ 𝑤 ) ) ) ) |
26 |
25
|
opabbidv |
⊢ ( 𝜑 → { 〈 𝑣 , 𝑤 〉 ∣ ( ( 𝑣 ∈ 𝐴 ∧ 𝑤 ∈ 𝐴 ) ∧ ∩ ( ◡ 𝐹 “ { 𝑣 } ) ∈ ∩ ( ◡ 𝐹 “ { 𝑤 } ) ) } = { 〈 𝑣 , 𝑤 〉 ∣ ( ( 𝑣 ∈ 𝐴 ∧ 𝑤 ∈ 𝐴 ) ∧ ( ( 𝑥 ∈ 𝐴 ↦ ∩ ( ◡ 𝐹 “ { 𝑥 } ) ) ‘ 𝑣 ) E ( ( 𝑥 ∈ 𝐴 ↦ ∩ ( ◡ 𝐹 “ { 𝑥 } ) ) ‘ 𝑤 ) ) } ) |
27 |
|
incom |
⊢ ( 𝐻 ∩ ( 𝐴 × 𝐴 ) ) = ( ( 𝐴 × 𝐴 ) ∩ 𝐻 ) |
28 |
|
df-xp |
⊢ ( 𝐴 × 𝐴 ) = { 〈 𝑣 , 𝑤 〉 ∣ ( 𝑣 ∈ 𝐴 ∧ 𝑤 ∈ 𝐴 ) } |
29 |
28 4
|
ineq12i |
⊢ ( ( 𝐴 × 𝐴 ) ∩ 𝐻 ) = ( { 〈 𝑣 , 𝑤 〉 ∣ ( 𝑣 ∈ 𝐴 ∧ 𝑤 ∈ 𝐴 ) } ∩ { 〈 𝑣 , 𝑤 〉 ∣ ∩ ( ◡ 𝐹 “ { 𝑣 } ) ∈ ∩ ( ◡ 𝐹 “ { 𝑤 } ) } ) |
30 |
|
inopab |
⊢ ( { 〈 𝑣 , 𝑤 〉 ∣ ( 𝑣 ∈ 𝐴 ∧ 𝑤 ∈ 𝐴 ) } ∩ { 〈 𝑣 , 𝑤 〉 ∣ ∩ ( ◡ 𝐹 “ { 𝑣 } ) ∈ ∩ ( ◡ 𝐹 “ { 𝑤 } ) } ) = { 〈 𝑣 , 𝑤 〉 ∣ ( ( 𝑣 ∈ 𝐴 ∧ 𝑤 ∈ 𝐴 ) ∧ ∩ ( ◡ 𝐹 “ { 𝑣 } ) ∈ ∩ ( ◡ 𝐹 “ { 𝑤 } ) ) } |
31 |
27 29 30
|
3eqtri |
⊢ ( 𝐻 ∩ ( 𝐴 × 𝐴 ) ) = { 〈 𝑣 , 𝑤 〉 ∣ ( ( 𝑣 ∈ 𝐴 ∧ 𝑤 ∈ 𝐴 ) ∧ ∩ ( ◡ 𝐹 “ { 𝑣 } ) ∈ ∩ ( ◡ 𝐹 “ { 𝑤 } ) ) } |
32 |
|
incom |
⊢ ( { 〈 𝑣 , 𝑤 〉 ∣ ( ( 𝑥 ∈ 𝐴 ↦ ∩ ( ◡ 𝐹 “ { 𝑥 } ) ) ‘ 𝑣 ) E ( ( 𝑥 ∈ 𝐴 ↦ ∩ ( ◡ 𝐹 “ { 𝑥 } ) ) ‘ 𝑤 ) } ∩ ( 𝐴 × 𝐴 ) ) = ( ( 𝐴 × 𝐴 ) ∩ { 〈 𝑣 , 𝑤 〉 ∣ ( ( 𝑥 ∈ 𝐴 ↦ ∩ ( ◡ 𝐹 “ { 𝑥 } ) ) ‘ 𝑣 ) E ( ( 𝑥 ∈ 𝐴 ↦ ∩ ( ◡ 𝐹 “ { 𝑥 } ) ) ‘ 𝑤 ) } ) |
33 |
28
|
ineq1i |
⊢ ( ( 𝐴 × 𝐴 ) ∩ { 〈 𝑣 , 𝑤 〉 ∣ ( ( 𝑥 ∈ 𝐴 ↦ ∩ ( ◡ 𝐹 “ { 𝑥 } ) ) ‘ 𝑣 ) E ( ( 𝑥 ∈ 𝐴 ↦ ∩ ( ◡ 𝐹 “ { 𝑥 } ) ) ‘ 𝑤 ) } ) = ( { 〈 𝑣 , 𝑤 〉 ∣ ( 𝑣 ∈ 𝐴 ∧ 𝑤 ∈ 𝐴 ) } ∩ { 〈 𝑣 , 𝑤 〉 ∣ ( ( 𝑥 ∈ 𝐴 ↦ ∩ ( ◡ 𝐹 “ { 𝑥 } ) ) ‘ 𝑣 ) E ( ( 𝑥 ∈ 𝐴 ↦ ∩ ( ◡ 𝐹 “ { 𝑥 } ) ) ‘ 𝑤 ) } ) |
34 |
|
inopab |
⊢ ( { 〈 𝑣 , 𝑤 〉 ∣ ( 𝑣 ∈ 𝐴 ∧ 𝑤 ∈ 𝐴 ) } ∩ { 〈 𝑣 , 𝑤 〉 ∣ ( ( 𝑥 ∈ 𝐴 ↦ ∩ ( ◡ 𝐹 “ { 𝑥 } ) ) ‘ 𝑣 ) E ( ( 𝑥 ∈ 𝐴 ↦ ∩ ( ◡ 𝐹 “ { 𝑥 } ) ) ‘ 𝑤 ) } ) = { 〈 𝑣 , 𝑤 〉 ∣ ( ( 𝑣 ∈ 𝐴 ∧ 𝑤 ∈ 𝐴 ) ∧ ( ( 𝑥 ∈ 𝐴 ↦ ∩ ( ◡ 𝐹 “ { 𝑥 } ) ) ‘ 𝑣 ) E ( ( 𝑥 ∈ 𝐴 ↦ ∩ ( ◡ 𝐹 “ { 𝑥 } ) ) ‘ 𝑤 ) ) } |
35 |
32 33 34
|
3eqtri |
⊢ ( { 〈 𝑣 , 𝑤 〉 ∣ ( ( 𝑥 ∈ 𝐴 ↦ ∩ ( ◡ 𝐹 “ { 𝑥 } ) ) ‘ 𝑣 ) E ( ( 𝑥 ∈ 𝐴 ↦ ∩ ( ◡ 𝐹 “ { 𝑥 } ) ) ‘ 𝑤 ) } ∩ ( 𝐴 × 𝐴 ) ) = { 〈 𝑣 , 𝑤 〉 ∣ ( ( 𝑣 ∈ 𝐴 ∧ 𝑤 ∈ 𝐴 ) ∧ ( ( 𝑥 ∈ 𝐴 ↦ ∩ ( ◡ 𝐹 “ { 𝑥 } ) ) ‘ 𝑣 ) E ( ( 𝑥 ∈ 𝐴 ↦ ∩ ( ◡ 𝐹 “ { 𝑥 } ) ) ‘ 𝑤 ) ) } |
36 |
26 31 35
|
3eqtr4g |
⊢ ( 𝜑 → ( 𝐻 ∩ ( 𝐴 × 𝐴 ) ) = ( { 〈 𝑣 , 𝑤 〉 ∣ ( ( 𝑥 ∈ 𝐴 ↦ ∩ ( ◡ 𝐹 “ { 𝑥 } ) ) ‘ 𝑣 ) E ( ( 𝑥 ∈ 𝐴 ↦ ∩ ( ◡ 𝐹 “ { 𝑥 } ) ) ‘ 𝑤 ) } ∩ ( 𝐴 × 𝐴 ) ) ) |
37 |
|
weeq1 |
⊢ ( ( 𝐻 ∩ ( 𝐴 × 𝐴 ) ) = ( { 〈 𝑣 , 𝑤 〉 ∣ ( ( 𝑥 ∈ 𝐴 ↦ ∩ ( ◡ 𝐹 “ { 𝑥 } ) ) ‘ 𝑣 ) E ( ( 𝑥 ∈ 𝐴 ↦ ∩ ( ◡ 𝐹 “ { 𝑥 } ) ) ‘ 𝑤 ) } ∩ ( 𝐴 × 𝐴 ) ) → ( ( 𝐻 ∩ ( 𝐴 × 𝐴 ) ) We 𝐴 ↔ ( { 〈 𝑣 , 𝑤 〉 ∣ ( ( 𝑥 ∈ 𝐴 ↦ ∩ ( ◡ 𝐹 “ { 𝑥 } ) ) ‘ 𝑣 ) E ( ( 𝑥 ∈ 𝐴 ↦ ∩ ( ◡ 𝐹 “ { 𝑥 } ) ) ‘ 𝑤 ) } ∩ ( 𝐴 × 𝐴 ) ) We 𝐴 ) ) |
38 |
36 37
|
syl |
⊢ ( 𝜑 → ( ( 𝐻 ∩ ( 𝐴 × 𝐴 ) ) We 𝐴 ↔ ( { 〈 𝑣 , 𝑤 〉 ∣ ( ( 𝑥 ∈ 𝐴 ↦ ∩ ( ◡ 𝐹 “ { 𝑥 } ) ) ‘ 𝑣 ) E ( ( 𝑥 ∈ 𝐴 ↦ ∩ ( ◡ 𝐹 “ { 𝑥 } ) ) ‘ 𝑤 ) } ∩ ( 𝐴 × 𝐴 ) ) We 𝐴 ) ) |
39 |
|
weinxp |
⊢ ( 𝐻 We 𝐴 ↔ ( 𝐻 ∩ ( 𝐴 × 𝐴 ) ) We 𝐴 ) |
40 |
|
weinxp |
⊢ ( { 〈 𝑣 , 𝑤 〉 ∣ ( ( 𝑥 ∈ 𝐴 ↦ ∩ ( ◡ 𝐹 “ { 𝑥 } ) ) ‘ 𝑣 ) E ( ( 𝑥 ∈ 𝐴 ↦ ∩ ( ◡ 𝐹 “ { 𝑥 } ) ) ‘ 𝑤 ) } We 𝐴 ↔ ( { 〈 𝑣 , 𝑤 〉 ∣ ( ( 𝑥 ∈ 𝐴 ↦ ∩ ( ◡ 𝐹 “ { 𝑥 } ) ) ‘ 𝑣 ) E ( ( 𝑥 ∈ 𝐴 ↦ ∩ ( ◡ 𝐹 “ { 𝑥 } ) ) ‘ 𝑤 ) } ∩ ( 𝐴 × 𝐴 ) ) We 𝐴 ) |
41 |
38 39 40
|
3bitr4g |
⊢ ( 𝜑 → ( 𝐻 We 𝐴 ↔ { 〈 𝑣 , 𝑤 〉 ∣ ( ( 𝑥 ∈ 𝐴 ↦ ∩ ( ◡ 𝐹 “ { 𝑥 } ) ) ‘ 𝑣 ) E ( ( 𝑥 ∈ 𝐴 ↦ ∩ ( ◡ 𝐹 “ { 𝑥 } ) ) ‘ 𝑤 ) } We 𝐴 ) ) |
42 |
16 41
|
mpbird |
⊢ ( 𝜑 → 𝐻 We 𝐴 ) |