| Step | Hyp | Ref | Expression | 
						
							| 1 |  | dnnumch.f | ⊢ 𝐹  =  recs ( ( 𝑧  ∈  V  ↦  ( 𝐺 ‘ ( 𝐴  ∖  ran  𝑧 ) ) ) ) | 
						
							| 2 |  | dnnumch.a | ⊢ ( 𝜑  →  𝐴  ∈  𝑉 ) | 
						
							| 3 |  | dnnumch.g | ⊢ ( 𝜑  →  ∀ 𝑦  ∈  𝒫  𝐴 ( 𝑦  ≠  ∅  →  ( 𝐺 ‘ 𝑦 )  ∈  𝑦 ) ) | 
						
							| 4 |  | dnwech.h | ⊢ 𝐻  =  { 〈 𝑣 ,  𝑤 〉  ∣  ∩  ( ◡ 𝐹  “  { 𝑣 } )  ∈  ∩  ( ◡ 𝐹  “  { 𝑤 } ) } | 
						
							| 5 | 1 2 3 | dnnumch3 | ⊢ ( 𝜑  →  ( 𝑥  ∈  𝐴  ↦  ∩  ( ◡ 𝐹  “  { 𝑥 } ) ) : 𝐴 –1-1→ On ) | 
						
							| 6 |  | f1f1orn | ⊢ ( ( 𝑥  ∈  𝐴  ↦  ∩  ( ◡ 𝐹  “  { 𝑥 } ) ) : 𝐴 –1-1→ On  →  ( 𝑥  ∈  𝐴  ↦  ∩  ( ◡ 𝐹  “  { 𝑥 } ) ) : 𝐴 –1-1-onto→ ran  ( 𝑥  ∈  𝐴  ↦  ∩  ( ◡ 𝐹  “  { 𝑥 } ) ) ) | 
						
							| 7 | 5 6 | syl | ⊢ ( 𝜑  →  ( 𝑥  ∈  𝐴  ↦  ∩  ( ◡ 𝐹  “  { 𝑥 } ) ) : 𝐴 –1-1-onto→ ran  ( 𝑥  ∈  𝐴  ↦  ∩  ( ◡ 𝐹  “  { 𝑥 } ) ) ) | 
						
							| 8 |  | f1f | ⊢ ( ( 𝑥  ∈  𝐴  ↦  ∩  ( ◡ 𝐹  “  { 𝑥 } ) ) : 𝐴 –1-1→ On  →  ( 𝑥  ∈  𝐴  ↦  ∩  ( ◡ 𝐹  “  { 𝑥 } ) ) : 𝐴 ⟶ On ) | 
						
							| 9 |  | frn | ⊢ ( ( 𝑥  ∈  𝐴  ↦  ∩  ( ◡ 𝐹  “  { 𝑥 } ) ) : 𝐴 ⟶ On  →  ran  ( 𝑥  ∈  𝐴  ↦  ∩  ( ◡ 𝐹  “  { 𝑥 } ) )  ⊆  On ) | 
						
							| 10 | 5 8 9 | 3syl | ⊢ ( 𝜑  →  ran  ( 𝑥  ∈  𝐴  ↦  ∩  ( ◡ 𝐹  “  { 𝑥 } ) )  ⊆  On ) | 
						
							| 11 |  | epweon | ⊢  E   We  On | 
						
							| 12 |  | wess | ⊢ ( ran  ( 𝑥  ∈  𝐴  ↦  ∩  ( ◡ 𝐹  “  { 𝑥 } ) )  ⊆  On  →  (  E   We  On  →   E   We  ran  ( 𝑥  ∈  𝐴  ↦  ∩  ( ◡ 𝐹  “  { 𝑥 } ) ) ) ) | 
						
							| 13 | 10 11 12 | mpisyl | ⊢ ( 𝜑  →   E   We  ran  ( 𝑥  ∈  𝐴  ↦  ∩  ( ◡ 𝐹  “  { 𝑥 } ) ) ) | 
						
							| 14 |  | eqid | ⊢ { 〈 𝑣 ,  𝑤 〉  ∣  ( ( 𝑥  ∈  𝐴  ↦  ∩  ( ◡ 𝐹  “  { 𝑥 } ) ) ‘ 𝑣 )  E  ( ( 𝑥  ∈  𝐴  ↦  ∩  ( ◡ 𝐹  “  { 𝑥 } ) ) ‘ 𝑤 ) }  =  { 〈 𝑣 ,  𝑤 〉  ∣  ( ( 𝑥  ∈  𝐴  ↦  ∩  ( ◡ 𝐹  “  { 𝑥 } ) ) ‘ 𝑣 )  E  ( ( 𝑥  ∈  𝐴  ↦  ∩  ( ◡ 𝐹  “  { 𝑥 } ) ) ‘ 𝑤 ) } | 
						
							| 15 | 14 | f1owe | ⊢ ( ( 𝑥  ∈  𝐴  ↦  ∩  ( ◡ 𝐹  “  { 𝑥 } ) ) : 𝐴 –1-1-onto→ ran  ( 𝑥  ∈  𝐴  ↦  ∩  ( ◡ 𝐹  “  { 𝑥 } ) )  →  (  E   We  ran  ( 𝑥  ∈  𝐴  ↦  ∩  ( ◡ 𝐹  “  { 𝑥 } ) )  →  { 〈 𝑣 ,  𝑤 〉  ∣  ( ( 𝑥  ∈  𝐴  ↦  ∩  ( ◡ 𝐹  “  { 𝑥 } ) ) ‘ 𝑣 )  E  ( ( 𝑥  ∈  𝐴  ↦  ∩  ( ◡ 𝐹  “  { 𝑥 } ) ) ‘ 𝑤 ) }  We  𝐴 ) ) | 
						
							| 16 | 7 13 15 | sylc | ⊢ ( 𝜑  →  { 〈 𝑣 ,  𝑤 〉  ∣  ( ( 𝑥  ∈  𝐴  ↦  ∩  ( ◡ 𝐹  “  { 𝑥 } ) ) ‘ 𝑣 )  E  ( ( 𝑥  ∈  𝐴  ↦  ∩  ( ◡ 𝐹  “  { 𝑥 } ) ) ‘ 𝑤 ) }  We  𝐴 ) | 
						
							| 17 |  | fvex | ⊢ ( ( 𝑥  ∈  𝐴  ↦  ∩  ( ◡ 𝐹  “  { 𝑥 } ) ) ‘ 𝑤 )  ∈  V | 
						
							| 18 | 17 | epeli | ⊢ ( ( ( 𝑥  ∈  𝐴  ↦  ∩  ( ◡ 𝐹  “  { 𝑥 } ) ) ‘ 𝑣 )  E  ( ( 𝑥  ∈  𝐴  ↦  ∩  ( ◡ 𝐹  “  { 𝑥 } ) ) ‘ 𝑤 )  ↔  ( ( 𝑥  ∈  𝐴  ↦  ∩  ( ◡ 𝐹  “  { 𝑥 } ) ) ‘ 𝑣 )  ∈  ( ( 𝑥  ∈  𝐴  ↦  ∩  ( ◡ 𝐹  “  { 𝑥 } ) ) ‘ 𝑤 ) ) | 
						
							| 19 | 1 2 3 | dnnumch3lem | ⊢ ( ( 𝜑  ∧  𝑣  ∈  𝐴 )  →  ( ( 𝑥  ∈  𝐴  ↦  ∩  ( ◡ 𝐹  “  { 𝑥 } ) ) ‘ 𝑣 )  =  ∩  ( ◡ 𝐹  “  { 𝑣 } ) ) | 
						
							| 20 | 19 | adantrr | ⊢ ( ( 𝜑  ∧  ( 𝑣  ∈  𝐴  ∧  𝑤  ∈  𝐴 ) )  →  ( ( 𝑥  ∈  𝐴  ↦  ∩  ( ◡ 𝐹  “  { 𝑥 } ) ) ‘ 𝑣 )  =  ∩  ( ◡ 𝐹  “  { 𝑣 } ) ) | 
						
							| 21 | 1 2 3 | dnnumch3lem | ⊢ ( ( 𝜑  ∧  𝑤  ∈  𝐴 )  →  ( ( 𝑥  ∈  𝐴  ↦  ∩  ( ◡ 𝐹  “  { 𝑥 } ) ) ‘ 𝑤 )  =  ∩  ( ◡ 𝐹  “  { 𝑤 } ) ) | 
						
							| 22 | 21 | adantrl | ⊢ ( ( 𝜑  ∧  ( 𝑣  ∈  𝐴  ∧  𝑤  ∈  𝐴 ) )  →  ( ( 𝑥  ∈  𝐴  ↦  ∩  ( ◡ 𝐹  “  { 𝑥 } ) ) ‘ 𝑤 )  =  ∩  ( ◡ 𝐹  “  { 𝑤 } ) ) | 
						
							| 23 | 20 22 | eleq12d | ⊢ ( ( 𝜑  ∧  ( 𝑣  ∈  𝐴  ∧  𝑤  ∈  𝐴 ) )  →  ( ( ( 𝑥  ∈  𝐴  ↦  ∩  ( ◡ 𝐹  “  { 𝑥 } ) ) ‘ 𝑣 )  ∈  ( ( 𝑥  ∈  𝐴  ↦  ∩  ( ◡ 𝐹  “  { 𝑥 } ) ) ‘ 𝑤 )  ↔  ∩  ( ◡ 𝐹  “  { 𝑣 } )  ∈  ∩  ( ◡ 𝐹  “  { 𝑤 } ) ) ) | 
						
							| 24 | 18 23 | bitr2id | ⊢ ( ( 𝜑  ∧  ( 𝑣  ∈  𝐴  ∧  𝑤  ∈  𝐴 ) )  →  ( ∩  ( ◡ 𝐹  “  { 𝑣 } )  ∈  ∩  ( ◡ 𝐹  “  { 𝑤 } )  ↔  ( ( 𝑥  ∈  𝐴  ↦  ∩  ( ◡ 𝐹  “  { 𝑥 } ) ) ‘ 𝑣 )  E  ( ( 𝑥  ∈  𝐴  ↦  ∩  ( ◡ 𝐹  “  { 𝑥 } ) ) ‘ 𝑤 ) ) ) | 
						
							| 25 | 24 | pm5.32da | ⊢ ( 𝜑  →  ( ( ( 𝑣  ∈  𝐴  ∧  𝑤  ∈  𝐴 )  ∧  ∩  ( ◡ 𝐹  “  { 𝑣 } )  ∈  ∩  ( ◡ 𝐹  “  { 𝑤 } ) )  ↔  ( ( 𝑣  ∈  𝐴  ∧  𝑤  ∈  𝐴 )  ∧  ( ( 𝑥  ∈  𝐴  ↦  ∩  ( ◡ 𝐹  “  { 𝑥 } ) ) ‘ 𝑣 )  E  ( ( 𝑥  ∈  𝐴  ↦  ∩  ( ◡ 𝐹  “  { 𝑥 } ) ) ‘ 𝑤 ) ) ) ) | 
						
							| 26 | 25 | opabbidv | ⊢ ( 𝜑  →  { 〈 𝑣 ,  𝑤 〉  ∣  ( ( 𝑣  ∈  𝐴  ∧  𝑤  ∈  𝐴 )  ∧  ∩  ( ◡ 𝐹  “  { 𝑣 } )  ∈  ∩  ( ◡ 𝐹  “  { 𝑤 } ) ) }  =  { 〈 𝑣 ,  𝑤 〉  ∣  ( ( 𝑣  ∈  𝐴  ∧  𝑤  ∈  𝐴 )  ∧  ( ( 𝑥  ∈  𝐴  ↦  ∩  ( ◡ 𝐹  “  { 𝑥 } ) ) ‘ 𝑣 )  E  ( ( 𝑥  ∈  𝐴  ↦  ∩  ( ◡ 𝐹  “  { 𝑥 } ) ) ‘ 𝑤 ) ) } ) | 
						
							| 27 |  | incom | ⊢ ( 𝐻  ∩  ( 𝐴  ×  𝐴 ) )  =  ( ( 𝐴  ×  𝐴 )  ∩  𝐻 ) | 
						
							| 28 |  | df-xp | ⊢ ( 𝐴  ×  𝐴 )  =  { 〈 𝑣 ,  𝑤 〉  ∣  ( 𝑣  ∈  𝐴  ∧  𝑤  ∈  𝐴 ) } | 
						
							| 29 | 28 4 | ineq12i | ⊢ ( ( 𝐴  ×  𝐴 )  ∩  𝐻 )  =  ( { 〈 𝑣 ,  𝑤 〉  ∣  ( 𝑣  ∈  𝐴  ∧  𝑤  ∈  𝐴 ) }  ∩  { 〈 𝑣 ,  𝑤 〉  ∣  ∩  ( ◡ 𝐹  “  { 𝑣 } )  ∈  ∩  ( ◡ 𝐹  “  { 𝑤 } ) } ) | 
						
							| 30 |  | inopab | ⊢ ( { 〈 𝑣 ,  𝑤 〉  ∣  ( 𝑣  ∈  𝐴  ∧  𝑤  ∈  𝐴 ) }  ∩  { 〈 𝑣 ,  𝑤 〉  ∣  ∩  ( ◡ 𝐹  “  { 𝑣 } )  ∈  ∩  ( ◡ 𝐹  “  { 𝑤 } ) } )  =  { 〈 𝑣 ,  𝑤 〉  ∣  ( ( 𝑣  ∈  𝐴  ∧  𝑤  ∈  𝐴 )  ∧  ∩  ( ◡ 𝐹  “  { 𝑣 } )  ∈  ∩  ( ◡ 𝐹  “  { 𝑤 } ) ) } | 
						
							| 31 | 27 29 30 | 3eqtri | ⊢ ( 𝐻  ∩  ( 𝐴  ×  𝐴 ) )  =  { 〈 𝑣 ,  𝑤 〉  ∣  ( ( 𝑣  ∈  𝐴  ∧  𝑤  ∈  𝐴 )  ∧  ∩  ( ◡ 𝐹  “  { 𝑣 } )  ∈  ∩  ( ◡ 𝐹  “  { 𝑤 } ) ) } | 
						
							| 32 |  | incom | ⊢ ( { 〈 𝑣 ,  𝑤 〉  ∣  ( ( 𝑥  ∈  𝐴  ↦  ∩  ( ◡ 𝐹  “  { 𝑥 } ) ) ‘ 𝑣 )  E  ( ( 𝑥  ∈  𝐴  ↦  ∩  ( ◡ 𝐹  “  { 𝑥 } ) ) ‘ 𝑤 ) }  ∩  ( 𝐴  ×  𝐴 ) )  =  ( ( 𝐴  ×  𝐴 )  ∩  { 〈 𝑣 ,  𝑤 〉  ∣  ( ( 𝑥  ∈  𝐴  ↦  ∩  ( ◡ 𝐹  “  { 𝑥 } ) ) ‘ 𝑣 )  E  ( ( 𝑥  ∈  𝐴  ↦  ∩  ( ◡ 𝐹  “  { 𝑥 } ) ) ‘ 𝑤 ) } ) | 
						
							| 33 | 28 | ineq1i | ⊢ ( ( 𝐴  ×  𝐴 )  ∩  { 〈 𝑣 ,  𝑤 〉  ∣  ( ( 𝑥  ∈  𝐴  ↦  ∩  ( ◡ 𝐹  “  { 𝑥 } ) ) ‘ 𝑣 )  E  ( ( 𝑥  ∈  𝐴  ↦  ∩  ( ◡ 𝐹  “  { 𝑥 } ) ) ‘ 𝑤 ) } )  =  ( { 〈 𝑣 ,  𝑤 〉  ∣  ( 𝑣  ∈  𝐴  ∧  𝑤  ∈  𝐴 ) }  ∩  { 〈 𝑣 ,  𝑤 〉  ∣  ( ( 𝑥  ∈  𝐴  ↦  ∩  ( ◡ 𝐹  “  { 𝑥 } ) ) ‘ 𝑣 )  E  ( ( 𝑥  ∈  𝐴  ↦  ∩  ( ◡ 𝐹  “  { 𝑥 } ) ) ‘ 𝑤 ) } ) | 
						
							| 34 |  | inopab | ⊢ ( { 〈 𝑣 ,  𝑤 〉  ∣  ( 𝑣  ∈  𝐴  ∧  𝑤  ∈  𝐴 ) }  ∩  { 〈 𝑣 ,  𝑤 〉  ∣  ( ( 𝑥  ∈  𝐴  ↦  ∩  ( ◡ 𝐹  “  { 𝑥 } ) ) ‘ 𝑣 )  E  ( ( 𝑥  ∈  𝐴  ↦  ∩  ( ◡ 𝐹  “  { 𝑥 } ) ) ‘ 𝑤 ) } )  =  { 〈 𝑣 ,  𝑤 〉  ∣  ( ( 𝑣  ∈  𝐴  ∧  𝑤  ∈  𝐴 )  ∧  ( ( 𝑥  ∈  𝐴  ↦  ∩  ( ◡ 𝐹  “  { 𝑥 } ) ) ‘ 𝑣 )  E  ( ( 𝑥  ∈  𝐴  ↦  ∩  ( ◡ 𝐹  “  { 𝑥 } ) ) ‘ 𝑤 ) ) } | 
						
							| 35 | 32 33 34 | 3eqtri | ⊢ ( { 〈 𝑣 ,  𝑤 〉  ∣  ( ( 𝑥  ∈  𝐴  ↦  ∩  ( ◡ 𝐹  “  { 𝑥 } ) ) ‘ 𝑣 )  E  ( ( 𝑥  ∈  𝐴  ↦  ∩  ( ◡ 𝐹  “  { 𝑥 } ) ) ‘ 𝑤 ) }  ∩  ( 𝐴  ×  𝐴 ) )  =  { 〈 𝑣 ,  𝑤 〉  ∣  ( ( 𝑣  ∈  𝐴  ∧  𝑤  ∈  𝐴 )  ∧  ( ( 𝑥  ∈  𝐴  ↦  ∩  ( ◡ 𝐹  “  { 𝑥 } ) ) ‘ 𝑣 )  E  ( ( 𝑥  ∈  𝐴  ↦  ∩  ( ◡ 𝐹  “  { 𝑥 } ) ) ‘ 𝑤 ) ) } | 
						
							| 36 | 26 31 35 | 3eqtr4g | ⊢ ( 𝜑  →  ( 𝐻  ∩  ( 𝐴  ×  𝐴 ) )  =  ( { 〈 𝑣 ,  𝑤 〉  ∣  ( ( 𝑥  ∈  𝐴  ↦  ∩  ( ◡ 𝐹  “  { 𝑥 } ) ) ‘ 𝑣 )  E  ( ( 𝑥  ∈  𝐴  ↦  ∩  ( ◡ 𝐹  “  { 𝑥 } ) ) ‘ 𝑤 ) }  ∩  ( 𝐴  ×  𝐴 ) ) ) | 
						
							| 37 |  | weeq1 | ⊢ ( ( 𝐻  ∩  ( 𝐴  ×  𝐴 ) )  =  ( { 〈 𝑣 ,  𝑤 〉  ∣  ( ( 𝑥  ∈  𝐴  ↦  ∩  ( ◡ 𝐹  “  { 𝑥 } ) ) ‘ 𝑣 )  E  ( ( 𝑥  ∈  𝐴  ↦  ∩  ( ◡ 𝐹  “  { 𝑥 } ) ) ‘ 𝑤 ) }  ∩  ( 𝐴  ×  𝐴 ) )  →  ( ( 𝐻  ∩  ( 𝐴  ×  𝐴 ) )  We  𝐴  ↔  ( { 〈 𝑣 ,  𝑤 〉  ∣  ( ( 𝑥  ∈  𝐴  ↦  ∩  ( ◡ 𝐹  “  { 𝑥 } ) ) ‘ 𝑣 )  E  ( ( 𝑥  ∈  𝐴  ↦  ∩  ( ◡ 𝐹  “  { 𝑥 } ) ) ‘ 𝑤 ) }  ∩  ( 𝐴  ×  𝐴 ) )  We  𝐴 ) ) | 
						
							| 38 | 36 37 | syl | ⊢ ( 𝜑  →  ( ( 𝐻  ∩  ( 𝐴  ×  𝐴 ) )  We  𝐴  ↔  ( { 〈 𝑣 ,  𝑤 〉  ∣  ( ( 𝑥  ∈  𝐴  ↦  ∩  ( ◡ 𝐹  “  { 𝑥 } ) ) ‘ 𝑣 )  E  ( ( 𝑥  ∈  𝐴  ↦  ∩  ( ◡ 𝐹  “  { 𝑥 } ) ) ‘ 𝑤 ) }  ∩  ( 𝐴  ×  𝐴 ) )  We  𝐴 ) ) | 
						
							| 39 |  | weinxp | ⊢ ( 𝐻  We  𝐴  ↔  ( 𝐻  ∩  ( 𝐴  ×  𝐴 ) )  We  𝐴 ) | 
						
							| 40 |  | weinxp | ⊢ ( { 〈 𝑣 ,  𝑤 〉  ∣  ( ( 𝑥  ∈  𝐴  ↦  ∩  ( ◡ 𝐹  “  { 𝑥 } ) ) ‘ 𝑣 )  E  ( ( 𝑥  ∈  𝐴  ↦  ∩  ( ◡ 𝐹  “  { 𝑥 } ) ) ‘ 𝑤 ) }  We  𝐴  ↔  ( { 〈 𝑣 ,  𝑤 〉  ∣  ( ( 𝑥  ∈  𝐴  ↦  ∩  ( ◡ 𝐹  “  { 𝑥 } ) ) ‘ 𝑣 )  E  ( ( 𝑥  ∈  𝐴  ↦  ∩  ( ◡ 𝐹  “  { 𝑥 } ) ) ‘ 𝑤 ) }  ∩  ( 𝐴  ×  𝐴 ) )  We  𝐴 ) | 
						
							| 41 | 38 39 40 | 3bitr4g | ⊢ ( 𝜑  →  ( 𝐻  We  𝐴  ↔  { 〈 𝑣 ,  𝑤 〉  ∣  ( ( 𝑥  ∈  𝐴  ↦  ∩  ( ◡ 𝐹  “  { 𝑥 } ) ) ‘ 𝑣 )  E  ( ( 𝑥  ∈  𝐴  ↦  ∩  ( ◡ 𝐹  “  { 𝑥 } ) ) ‘ 𝑤 ) }  We  𝐴 ) ) | 
						
							| 42 | 16 41 | mpbird | ⊢ ( 𝜑  →  𝐻  We  𝐴 ) |