Metamath Proof Explorer
Description: A set dominated by the empty set is empty. (Contributed by NM, 22-Nov-2004)
|
|
Ref |
Expression |
|
Assertion |
dom0 |
⊢ ( 𝐴 ≼ ∅ ↔ 𝐴 = ∅ ) |
Proof
Step |
Hyp |
Ref |
Expression |
1 |
|
reldom |
⊢ Rel ≼ |
2 |
1
|
brrelex1i |
⊢ ( 𝐴 ≼ ∅ → 𝐴 ∈ V ) |
3 |
|
0domg |
⊢ ( 𝐴 ∈ V → ∅ ≼ 𝐴 ) |
4 |
2 3
|
syl |
⊢ ( 𝐴 ≼ ∅ → ∅ ≼ 𝐴 ) |
5 |
4
|
pm4.71i |
⊢ ( 𝐴 ≼ ∅ ↔ ( 𝐴 ≼ ∅ ∧ ∅ ≼ 𝐴 ) ) |
6 |
|
sbthb |
⊢ ( ( 𝐴 ≼ ∅ ∧ ∅ ≼ 𝐴 ) ↔ 𝐴 ≈ ∅ ) |
7 |
|
en0 |
⊢ ( 𝐴 ≈ ∅ ↔ 𝐴 = ∅ ) |
8 |
5 6 7
|
3bitri |
⊢ ( 𝐴 ≼ ∅ ↔ 𝐴 = ∅ ) |