Metamath Proof Explorer


Theorem dom0

Description: A set dominated by the empty set is empty. (Contributed by NM, 22-Nov-2004)

Ref Expression
Assertion dom0 ( 𝐴 ≼ ∅ ↔ 𝐴 = ∅ )

Proof

Step Hyp Ref Expression
1 reldom Rel ≼
2 1 brrelex1i ( 𝐴 ≼ ∅ → 𝐴 ∈ V )
3 0domg ( 𝐴 ∈ V → ∅ ≼ 𝐴 )
4 2 3 syl ( 𝐴 ≼ ∅ → ∅ ≼ 𝐴 )
5 4 pm4.71i ( 𝐴 ≼ ∅ ↔ ( 𝐴 ≼ ∅ ∧ ∅ ≼ 𝐴 ) )
6 sbthb ( ( 𝐴 ≼ ∅ ∧ ∅ ≼ 𝐴 ) ↔ 𝐴 ≈ ∅ )
7 en0 ( 𝐴 ≈ ∅ ↔ 𝐴 = ∅ )
8 5 6 7 3bitri ( 𝐴 ≼ ∅ ↔ 𝐴 = ∅ )