Metamath Proof Explorer


Theorem dom0

Description: A set dominated by the empty set is empty. (Contributed by NM, 22-Nov-2004) Avoid ax-pow , ax-un . (Revised by BTernaryTau, 29-Nov-2024)

Ref Expression
Assertion dom0 ( 𝐴 ≼ ∅ ↔ 𝐴 = ∅ )

Proof

Step Hyp Ref Expression
1 brdomi ( 𝐴 ≼ ∅ → ∃ 𝑓 𝑓 : 𝐴1-1→ ∅ )
2 f1f ( 𝑓 : 𝐴1-1→ ∅ → 𝑓 : 𝐴 ⟶ ∅ )
3 f00 ( 𝑓 : 𝐴 ⟶ ∅ ↔ ( 𝑓 = ∅ ∧ 𝐴 = ∅ ) )
4 3 simprbi ( 𝑓 : 𝐴 ⟶ ∅ → 𝐴 = ∅ )
5 2 4 syl ( 𝑓 : 𝐴1-1→ ∅ → 𝐴 = ∅ )
6 5 exlimiv ( ∃ 𝑓 𝑓 : 𝐴1-1→ ∅ → 𝐴 = ∅ )
7 1 6 syl ( 𝐴 ≼ ∅ → 𝐴 = ∅ )
8 en0 ( 𝐴 ≈ ∅ ↔ 𝐴 = ∅ )
9 endom ( 𝐴 ≈ ∅ → 𝐴 ≼ ∅ )
10 8 9 sylbir ( 𝐴 = ∅ → 𝐴 ≼ ∅ )
11 7 10 impbii ( 𝐴 ≼ ∅ ↔ 𝐴 = ∅ )