Description: A set dominated by the empty set is empty. (Contributed by NM, 22-Nov-2004) Avoid ax-pow , ax-un . (Revised by BTernaryTau, 29-Nov-2024)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | dom0 | ⊢ ( 𝐴 ≼ ∅ ↔ 𝐴 = ∅ ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | brdomi | ⊢ ( 𝐴 ≼ ∅ → ∃ 𝑓 𝑓 : 𝐴 –1-1→ ∅ ) | |
| 2 | f1f | ⊢ ( 𝑓 : 𝐴 –1-1→ ∅ → 𝑓 : 𝐴 ⟶ ∅ ) | |
| 3 | f00 | ⊢ ( 𝑓 : 𝐴 ⟶ ∅ ↔ ( 𝑓 = ∅ ∧ 𝐴 = ∅ ) ) | |
| 4 | 3 | simprbi | ⊢ ( 𝑓 : 𝐴 ⟶ ∅ → 𝐴 = ∅ ) |
| 5 | 2 4 | syl | ⊢ ( 𝑓 : 𝐴 –1-1→ ∅ → 𝐴 = ∅ ) |
| 6 | 5 | exlimiv | ⊢ ( ∃ 𝑓 𝑓 : 𝐴 –1-1→ ∅ → 𝐴 = ∅ ) |
| 7 | 1 6 | syl | ⊢ ( 𝐴 ≼ ∅ → 𝐴 = ∅ ) |
| 8 | en0 | ⊢ ( 𝐴 ≈ ∅ ↔ 𝐴 = ∅ ) | |
| 9 | endom | ⊢ ( 𝐴 ≈ ∅ → 𝐴 ≼ ∅ ) | |
| 10 | 8 9 | sylbir | ⊢ ( 𝐴 = ∅ → 𝐴 ≼ ∅ ) |
| 11 | 7 10 | impbii | ⊢ ( 𝐴 ≼ ∅ ↔ 𝐴 = ∅ ) |