Description: A mapping (first hypothesis) that is one-to-one (second hypothesis) implies its domain is dominated by its codomain. (Contributed by NM, 24-Jul-2004) (Revised by Mario Carneiro, 20-May-2013)
Ref | Expression | ||
---|---|---|---|
Hypotheses | dom2d.1 | ⊢ ( 𝜑 → ( 𝑥 ∈ 𝐴 → 𝐶 ∈ 𝐵 ) ) | |
dom2d.2 | ⊢ ( 𝜑 → ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴 ) → ( 𝐶 = 𝐷 ↔ 𝑥 = 𝑦 ) ) ) | ||
Assertion | dom2d | ⊢ ( 𝜑 → ( 𝐵 ∈ 𝑅 → 𝐴 ≼ 𝐵 ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dom2d.1 | ⊢ ( 𝜑 → ( 𝑥 ∈ 𝐴 → 𝐶 ∈ 𝐵 ) ) | |
2 | dom2d.2 | ⊢ ( 𝜑 → ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴 ) → ( 𝐶 = 𝐷 ↔ 𝑥 = 𝑦 ) ) ) | |
3 | 1 2 | dom2lem | ⊢ ( 𝜑 → ( 𝑥 ∈ 𝐴 ↦ 𝐶 ) : 𝐴 –1-1→ 𝐵 ) |
4 | f1domg | ⊢ ( 𝐵 ∈ 𝑅 → ( ( 𝑥 ∈ 𝐴 ↦ 𝐶 ) : 𝐴 –1-1→ 𝐵 → 𝐴 ≼ 𝐵 ) ) | |
5 | 3 4 | syl5com | ⊢ ( 𝜑 → ( 𝐵 ∈ 𝑅 → 𝐴 ≼ 𝐵 ) ) |