Step |
Hyp |
Ref |
Expression |
1 |
|
dom2d.1 |
⊢ ( 𝜑 → ( 𝑥 ∈ 𝐴 → 𝐶 ∈ 𝐵 ) ) |
2 |
|
dom2d.2 |
⊢ ( 𝜑 → ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴 ) → ( 𝐶 = 𝐷 ↔ 𝑥 = 𝑦 ) ) ) |
3 |
1
|
ralrimiv |
⊢ ( 𝜑 → ∀ 𝑥 ∈ 𝐴 𝐶 ∈ 𝐵 ) |
4 |
|
eqid |
⊢ ( 𝑥 ∈ 𝐴 ↦ 𝐶 ) = ( 𝑥 ∈ 𝐴 ↦ 𝐶 ) |
5 |
4
|
fmpt |
⊢ ( ∀ 𝑥 ∈ 𝐴 𝐶 ∈ 𝐵 ↔ ( 𝑥 ∈ 𝐴 ↦ 𝐶 ) : 𝐴 ⟶ 𝐵 ) |
6 |
3 5
|
sylib |
⊢ ( 𝜑 → ( 𝑥 ∈ 𝐴 ↦ 𝐶 ) : 𝐴 ⟶ 𝐵 ) |
7 |
1
|
imp |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → 𝐶 ∈ 𝐵 ) |
8 |
4
|
fvmpt2 |
⊢ ( ( 𝑥 ∈ 𝐴 ∧ 𝐶 ∈ 𝐵 ) → ( ( 𝑥 ∈ 𝐴 ↦ 𝐶 ) ‘ 𝑥 ) = 𝐶 ) |
9 |
8
|
adantll |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) ∧ 𝐶 ∈ 𝐵 ) → ( ( 𝑥 ∈ 𝐴 ↦ 𝐶 ) ‘ 𝑥 ) = 𝐶 ) |
10 |
7 9
|
mpdan |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ( ( 𝑥 ∈ 𝐴 ↦ 𝐶 ) ‘ 𝑥 ) = 𝐶 ) |
11 |
10
|
adantrr |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴 ) ) → ( ( 𝑥 ∈ 𝐴 ↦ 𝐶 ) ‘ 𝑥 ) = 𝐶 ) |
12 |
|
nfv |
⊢ Ⅎ 𝑥 ( 𝜑 ∧ 𝑦 ∈ 𝐴 ) |
13 |
|
nffvmpt1 |
⊢ Ⅎ 𝑥 ( ( 𝑥 ∈ 𝐴 ↦ 𝐶 ) ‘ 𝑦 ) |
14 |
13
|
nfeq1 |
⊢ Ⅎ 𝑥 ( ( 𝑥 ∈ 𝐴 ↦ 𝐶 ) ‘ 𝑦 ) = 𝐷 |
15 |
12 14
|
nfim |
⊢ Ⅎ 𝑥 ( ( 𝜑 ∧ 𝑦 ∈ 𝐴 ) → ( ( 𝑥 ∈ 𝐴 ↦ 𝐶 ) ‘ 𝑦 ) = 𝐷 ) |
16 |
|
eleq1w |
⊢ ( 𝑥 = 𝑦 → ( 𝑥 ∈ 𝐴 ↔ 𝑦 ∈ 𝐴 ) ) |
17 |
16
|
anbi2d |
⊢ ( 𝑥 = 𝑦 → ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) ↔ ( 𝜑 ∧ 𝑦 ∈ 𝐴 ) ) ) |
18 |
17
|
imbi1d |
⊢ ( 𝑥 = 𝑦 → ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ( ( 𝑥 ∈ 𝐴 ↦ 𝐶 ) ‘ 𝑥 ) = 𝐶 ) ↔ ( ( 𝜑 ∧ 𝑦 ∈ 𝐴 ) → ( ( 𝑥 ∈ 𝐴 ↦ 𝐶 ) ‘ 𝑥 ) = 𝐶 ) ) ) |
19 |
16
|
anbi1d |
⊢ ( 𝑥 = 𝑦 → ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴 ) ↔ ( 𝑦 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴 ) ) ) |
20 |
|
anidm |
⊢ ( ( 𝑦 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴 ) ↔ 𝑦 ∈ 𝐴 ) |
21 |
19 20
|
bitrdi |
⊢ ( 𝑥 = 𝑦 → ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴 ) ↔ 𝑦 ∈ 𝐴 ) ) |
22 |
21
|
anbi2d |
⊢ ( 𝑥 = 𝑦 → ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴 ) ) ↔ ( 𝜑 ∧ 𝑦 ∈ 𝐴 ) ) ) |
23 |
|
fveq2 |
⊢ ( 𝑥 = 𝑦 → ( ( 𝑥 ∈ 𝐴 ↦ 𝐶 ) ‘ 𝑥 ) = ( ( 𝑥 ∈ 𝐴 ↦ 𝐶 ) ‘ 𝑦 ) ) |
24 |
23
|
adantr |
⊢ ( ( 𝑥 = 𝑦 ∧ ( 𝜑 ∧ ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴 ) ) ) → ( ( 𝑥 ∈ 𝐴 ↦ 𝐶 ) ‘ 𝑥 ) = ( ( 𝑥 ∈ 𝐴 ↦ 𝐶 ) ‘ 𝑦 ) ) |
25 |
2
|
imp |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴 ) ) → ( 𝐶 = 𝐷 ↔ 𝑥 = 𝑦 ) ) |
26 |
25
|
biimparc |
⊢ ( ( 𝑥 = 𝑦 ∧ ( 𝜑 ∧ ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴 ) ) ) → 𝐶 = 𝐷 ) |
27 |
24 26
|
eqeq12d |
⊢ ( ( 𝑥 = 𝑦 ∧ ( 𝜑 ∧ ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴 ) ) ) → ( ( ( 𝑥 ∈ 𝐴 ↦ 𝐶 ) ‘ 𝑥 ) = 𝐶 ↔ ( ( 𝑥 ∈ 𝐴 ↦ 𝐶 ) ‘ 𝑦 ) = 𝐷 ) ) |
28 |
27
|
ex |
⊢ ( 𝑥 = 𝑦 → ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴 ) ) → ( ( ( 𝑥 ∈ 𝐴 ↦ 𝐶 ) ‘ 𝑥 ) = 𝐶 ↔ ( ( 𝑥 ∈ 𝐴 ↦ 𝐶 ) ‘ 𝑦 ) = 𝐷 ) ) ) |
29 |
22 28
|
sylbird |
⊢ ( 𝑥 = 𝑦 → ( ( 𝜑 ∧ 𝑦 ∈ 𝐴 ) → ( ( ( 𝑥 ∈ 𝐴 ↦ 𝐶 ) ‘ 𝑥 ) = 𝐶 ↔ ( ( 𝑥 ∈ 𝐴 ↦ 𝐶 ) ‘ 𝑦 ) = 𝐷 ) ) ) |
30 |
29
|
pm5.74d |
⊢ ( 𝑥 = 𝑦 → ( ( ( 𝜑 ∧ 𝑦 ∈ 𝐴 ) → ( ( 𝑥 ∈ 𝐴 ↦ 𝐶 ) ‘ 𝑥 ) = 𝐶 ) ↔ ( ( 𝜑 ∧ 𝑦 ∈ 𝐴 ) → ( ( 𝑥 ∈ 𝐴 ↦ 𝐶 ) ‘ 𝑦 ) = 𝐷 ) ) ) |
31 |
18 30
|
bitrd |
⊢ ( 𝑥 = 𝑦 → ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ( ( 𝑥 ∈ 𝐴 ↦ 𝐶 ) ‘ 𝑥 ) = 𝐶 ) ↔ ( ( 𝜑 ∧ 𝑦 ∈ 𝐴 ) → ( ( 𝑥 ∈ 𝐴 ↦ 𝐶 ) ‘ 𝑦 ) = 𝐷 ) ) ) |
32 |
15 31 10
|
chvarfv |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝐴 ) → ( ( 𝑥 ∈ 𝐴 ↦ 𝐶 ) ‘ 𝑦 ) = 𝐷 ) |
33 |
32
|
adantrl |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴 ) ) → ( ( 𝑥 ∈ 𝐴 ↦ 𝐶 ) ‘ 𝑦 ) = 𝐷 ) |
34 |
11 33
|
eqeq12d |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴 ) ) → ( ( ( 𝑥 ∈ 𝐴 ↦ 𝐶 ) ‘ 𝑥 ) = ( ( 𝑥 ∈ 𝐴 ↦ 𝐶 ) ‘ 𝑦 ) ↔ 𝐶 = 𝐷 ) ) |
35 |
25
|
biimpd |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴 ) ) → ( 𝐶 = 𝐷 → 𝑥 = 𝑦 ) ) |
36 |
34 35
|
sylbid |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴 ) ) → ( ( ( 𝑥 ∈ 𝐴 ↦ 𝐶 ) ‘ 𝑥 ) = ( ( 𝑥 ∈ 𝐴 ↦ 𝐶 ) ‘ 𝑦 ) → 𝑥 = 𝑦 ) ) |
37 |
36
|
ralrimivva |
⊢ ( 𝜑 → ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ( ( ( 𝑥 ∈ 𝐴 ↦ 𝐶 ) ‘ 𝑥 ) = ( ( 𝑥 ∈ 𝐴 ↦ 𝐶 ) ‘ 𝑦 ) → 𝑥 = 𝑦 ) ) |
38 |
|
nfmpt1 |
⊢ Ⅎ 𝑥 ( 𝑥 ∈ 𝐴 ↦ 𝐶 ) |
39 |
|
nfcv |
⊢ Ⅎ 𝑦 ( 𝑥 ∈ 𝐴 ↦ 𝐶 ) |
40 |
38 39
|
dff13f |
⊢ ( ( 𝑥 ∈ 𝐴 ↦ 𝐶 ) : 𝐴 –1-1→ 𝐵 ↔ ( ( 𝑥 ∈ 𝐴 ↦ 𝐶 ) : 𝐴 ⟶ 𝐵 ∧ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ( ( ( 𝑥 ∈ 𝐴 ↦ 𝐶 ) ‘ 𝑥 ) = ( ( 𝑥 ∈ 𝐴 ↦ 𝐶 ) ‘ 𝑦 ) → 𝑥 = 𝑦 ) ) ) |
41 |
6 37 40
|
sylanbrc |
⊢ ( 𝜑 → ( 𝑥 ∈ 𝐴 ↦ 𝐶 ) : 𝐴 –1-1→ 𝐵 ) |