Metamath Proof Explorer


Theorem dom3d

Description: A mapping (first hypothesis) that is one-to-one (second hypothesis) implies its domain is dominated by its codomain. (Contributed by Mario Carneiro, 20-May-2013)

Ref Expression
Hypotheses dom2d.1 ( 𝜑 → ( 𝑥𝐴𝐶𝐵 ) )
dom2d.2 ( 𝜑 → ( ( 𝑥𝐴𝑦𝐴 ) → ( 𝐶 = 𝐷𝑥 = 𝑦 ) ) )
dom3d.3 ( 𝜑𝐴𝑉 )
dom3d.4 ( 𝜑𝐵𝑊 )
Assertion dom3d ( 𝜑𝐴𝐵 )

Proof

Step Hyp Ref Expression
1 dom2d.1 ( 𝜑 → ( 𝑥𝐴𝐶𝐵 ) )
2 dom2d.2 ( 𝜑 → ( ( 𝑥𝐴𝑦𝐴 ) → ( 𝐶 = 𝐷𝑥 = 𝑦 ) ) )
3 dom3d.3 ( 𝜑𝐴𝑉 )
4 dom3d.4 ( 𝜑𝐵𝑊 )
5 1 2 dom2lem ( 𝜑 → ( 𝑥𝐴𝐶 ) : 𝐴1-1𝐵 )
6 f1f ( ( 𝑥𝐴𝐶 ) : 𝐴1-1𝐵 → ( 𝑥𝐴𝐶 ) : 𝐴𝐵 )
7 5 6 syl ( 𝜑 → ( 𝑥𝐴𝐶 ) : 𝐴𝐵 )
8 fex2 ( ( ( 𝑥𝐴𝐶 ) : 𝐴𝐵𝐴𝑉𝐵𝑊 ) → ( 𝑥𝐴𝐶 ) ∈ V )
9 7 3 4 8 syl3anc ( 𝜑 → ( 𝑥𝐴𝐶 ) ∈ V )
10 f1eq1 ( 𝑧 = ( 𝑥𝐴𝐶 ) → ( 𝑧 : 𝐴1-1𝐵 ↔ ( 𝑥𝐴𝐶 ) : 𝐴1-1𝐵 ) )
11 9 5 10 spcedv ( 𝜑 → ∃ 𝑧 𝑧 : 𝐴1-1𝐵 )
12 brdomg ( 𝐵𝑊 → ( 𝐴𝐵 ↔ ∃ 𝑧 𝑧 : 𝐴1-1𝐵 ) )
13 4 12 syl ( 𝜑 → ( 𝐴𝐵 ↔ ∃ 𝑧 𝑧 : 𝐴1-1𝐵 ) )
14 11 13 mpbird ( 𝜑𝐴𝐵 )