Step |
Hyp |
Ref |
Expression |
1 |
|
dom2d.1 |
⊢ ( 𝜑 → ( 𝑥 ∈ 𝐴 → 𝐶 ∈ 𝐵 ) ) |
2 |
|
dom2d.2 |
⊢ ( 𝜑 → ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴 ) → ( 𝐶 = 𝐷 ↔ 𝑥 = 𝑦 ) ) ) |
3 |
|
dom3d.3 |
⊢ ( 𝜑 → 𝐴 ∈ 𝑉 ) |
4 |
|
dom3d.4 |
⊢ ( 𝜑 → 𝐵 ∈ 𝑊 ) |
5 |
1 2
|
dom2lem |
⊢ ( 𝜑 → ( 𝑥 ∈ 𝐴 ↦ 𝐶 ) : 𝐴 –1-1→ 𝐵 ) |
6 |
|
f1f |
⊢ ( ( 𝑥 ∈ 𝐴 ↦ 𝐶 ) : 𝐴 –1-1→ 𝐵 → ( 𝑥 ∈ 𝐴 ↦ 𝐶 ) : 𝐴 ⟶ 𝐵 ) |
7 |
5 6
|
syl |
⊢ ( 𝜑 → ( 𝑥 ∈ 𝐴 ↦ 𝐶 ) : 𝐴 ⟶ 𝐵 ) |
8 |
|
fex2 |
⊢ ( ( ( 𝑥 ∈ 𝐴 ↦ 𝐶 ) : 𝐴 ⟶ 𝐵 ∧ 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ) → ( 𝑥 ∈ 𝐴 ↦ 𝐶 ) ∈ V ) |
9 |
7 3 4 8
|
syl3anc |
⊢ ( 𝜑 → ( 𝑥 ∈ 𝐴 ↦ 𝐶 ) ∈ V ) |
10 |
|
f1eq1 |
⊢ ( 𝑧 = ( 𝑥 ∈ 𝐴 ↦ 𝐶 ) → ( 𝑧 : 𝐴 –1-1→ 𝐵 ↔ ( 𝑥 ∈ 𝐴 ↦ 𝐶 ) : 𝐴 –1-1→ 𝐵 ) ) |
11 |
9 5 10
|
spcedv |
⊢ ( 𝜑 → ∃ 𝑧 𝑧 : 𝐴 –1-1→ 𝐵 ) |
12 |
|
brdomg |
⊢ ( 𝐵 ∈ 𝑊 → ( 𝐴 ≼ 𝐵 ↔ ∃ 𝑧 𝑧 : 𝐴 –1-1→ 𝐵 ) ) |
13 |
4 12
|
syl |
⊢ ( 𝜑 → ( 𝐴 ≼ 𝐵 ↔ ∃ 𝑧 𝑧 : 𝐴 –1-1→ 𝐵 ) ) |
14 |
11 13
|
mpbird |
⊢ ( 𝜑 → 𝐴 ≼ 𝐵 ) |