| Step | Hyp | Ref | Expression | 
						
							| 1 |  | sdomdom | ⊢ ( 𝐴  ≺  𝐵  →  𝐴  ≼  𝐵 ) | 
						
							| 2 |  | relsdom | ⊢ Rel   ≺ | 
						
							| 3 | 2 | brrelex2i | ⊢ ( 𝐴  ≺  𝐵  →  𝐵  ∈  V ) | 
						
							| 4 |  | brdomg | ⊢ ( 𝐵  ∈  V  →  ( 𝐴  ≼  𝐵  ↔  ∃ 𝑓 𝑓 : 𝐴 –1-1→ 𝐵 ) ) | 
						
							| 5 | 3 4 | syl | ⊢ ( 𝐴  ≺  𝐵  →  ( 𝐴  ≼  𝐵  ↔  ∃ 𝑓 𝑓 : 𝐴 –1-1→ 𝐵 ) ) | 
						
							| 6 | 1 5 | mpbid | ⊢ ( 𝐴  ≺  𝐵  →  ∃ 𝑓 𝑓 : 𝐴 –1-1→ 𝐵 ) | 
						
							| 7 | 6 | adantr | ⊢ ( ( 𝐴  ≺  𝐵  ∧  𝐶  ∈  𝐵 )  →  ∃ 𝑓 𝑓 : 𝐴 –1-1→ 𝐵 ) | 
						
							| 8 |  | f1f | ⊢ ( 𝑓 : 𝐴 –1-1→ 𝐵  →  𝑓 : 𝐴 ⟶ 𝐵 ) | 
						
							| 9 | 8 | frnd | ⊢ ( 𝑓 : 𝐴 –1-1→ 𝐵  →  ran  𝑓  ⊆  𝐵 ) | 
						
							| 10 | 9 | adantl | ⊢ ( ( ( 𝐴  ≺  𝐵  ∧  𝐶  ∈  𝐵 )  ∧  𝑓 : 𝐴 –1-1→ 𝐵 )  →  ran  𝑓  ⊆  𝐵 ) | 
						
							| 11 |  | sdomnen | ⊢ ( 𝐴  ≺  𝐵  →  ¬  𝐴  ≈  𝐵 ) | 
						
							| 12 | 11 | ad2antrr | ⊢ ( ( ( 𝐴  ≺  𝐵  ∧  𝐶  ∈  𝐵 )  ∧  𝑓 : 𝐴 –1-1→ 𝐵 )  →  ¬  𝐴  ≈  𝐵 ) | 
						
							| 13 |  | vex | ⊢ 𝑓  ∈  V | 
						
							| 14 |  | dff1o5 | ⊢ ( 𝑓 : 𝐴 –1-1-onto→ 𝐵  ↔  ( 𝑓 : 𝐴 –1-1→ 𝐵  ∧  ran  𝑓  =  𝐵 ) ) | 
						
							| 15 | 14 | biimpri | ⊢ ( ( 𝑓 : 𝐴 –1-1→ 𝐵  ∧  ran  𝑓  =  𝐵 )  →  𝑓 : 𝐴 –1-1-onto→ 𝐵 ) | 
						
							| 16 |  | f1oen3g | ⊢ ( ( 𝑓  ∈  V  ∧  𝑓 : 𝐴 –1-1-onto→ 𝐵 )  →  𝐴  ≈  𝐵 ) | 
						
							| 17 | 13 15 16 | sylancr | ⊢ ( ( 𝑓 : 𝐴 –1-1→ 𝐵  ∧  ran  𝑓  =  𝐵 )  →  𝐴  ≈  𝐵 ) | 
						
							| 18 | 17 | ex | ⊢ ( 𝑓 : 𝐴 –1-1→ 𝐵  →  ( ran  𝑓  =  𝐵  →  𝐴  ≈  𝐵 ) ) | 
						
							| 19 | 18 | necon3bd | ⊢ ( 𝑓 : 𝐴 –1-1→ 𝐵  →  ( ¬  𝐴  ≈  𝐵  →  ran  𝑓  ≠  𝐵 ) ) | 
						
							| 20 | 19 | adantl | ⊢ ( ( ( 𝐴  ≺  𝐵  ∧  𝐶  ∈  𝐵 )  ∧  𝑓 : 𝐴 –1-1→ 𝐵 )  →  ( ¬  𝐴  ≈  𝐵  →  ran  𝑓  ≠  𝐵 ) ) | 
						
							| 21 | 12 20 | mpd | ⊢ ( ( ( 𝐴  ≺  𝐵  ∧  𝐶  ∈  𝐵 )  ∧  𝑓 : 𝐴 –1-1→ 𝐵 )  →  ran  𝑓  ≠  𝐵 ) | 
						
							| 22 |  | pssdifn0 | ⊢ ( ( ran  𝑓  ⊆  𝐵  ∧  ran  𝑓  ≠  𝐵 )  →  ( 𝐵  ∖  ran  𝑓 )  ≠  ∅ ) | 
						
							| 23 | 10 21 22 | syl2anc | ⊢ ( ( ( 𝐴  ≺  𝐵  ∧  𝐶  ∈  𝐵 )  ∧  𝑓 : 𝐴 –1-1→ 𝐵 )  →  ( 𝐵  ∖  ran  𝑓 )  ≠  ∅ ) | 
						
							| 24 |  | n0 | ⊢ ( ( 𝐵  ∖  ran  𝑓 )  ≠  ∅  ↔  ∃ 𝑥 𝑥  ∈  ( 𝐵  ∖  ran  𝑓 ) ) | 
						
							| 25 | 23 24 | sylib | ⊢ ( ( ( 𝐴  ≺  𝐵  ∧  𝐶  ∈  𝐵 )  ∧  𝑓 : 𝐴 –1-1→ 𝐵 )  →  ∃ 𝑥 𝑥  ∈  ( 𝐵  ∖  ran  𝑓 ) ) | 
						
							| 26 | 2 | brrelex1i | ⊢ ( 𝐴  ≺  𝐵  →  𝐴  ∈  V ) | 
						
							| 27 | 26 | ad2antrr | ⊢ ( ( ( 𝐴  ≺  𝐵  ∧  𝐶  ∈  𝐵 )  ∧  ( 𝑓 : 𝐴 –1-1→ 𝐵  ∧  𝑥  ∈  ( 𝐵  ∖  ran  𝑓 ) ) )  →  𝐴  ∈  V ) | 
						
							| 28 | 3 | ad2antrr | ⊢ ( ( ( 𝐴  ≺  𝐵  ∧  𝐶  ∈  𝐵 )  ∧  ( 𝑓 : 𝐴 –1-1→ 𝐵  ∧  𝑥  ∈  ( 𝐵  ∖  ran  𝑓 ) ) )  →  𝐵  ∈  V ) | 
						
							| 29 | 28 | difexd | ⊢ ( ( ( 𝐴  ≺  𝐵  ∧  𝐶  ∈  𝐵 )  ∧  ( 𝑓 : 𝐴 –1-1→ 𝐵  ∧  𝑥  ∈  ( 𝐵  ∖  ran  𝑓 ) ) )  →  ( 𝐵  ∖  { 𝑥 } )  ∈  V ) | 
						
							| 30 |  | eldifn | ⊢ ( 𝑥  ∈  ( 𝐵  ∖  ran  𝑓 )  →  ¬  𝑥  ∈  ran  𝑓 ) | 
						
							| 31 |  | disjsn | ⊢ ( ( ran  𝑓  ∩  { 𝑥 } )  =  ∅  ↔  ¬  𝑥  ∈  ran  𝑓 ) | 
						
							| 32 | 30 31 | sylibr | ⊢ ( 𝑥  ∈  ( 𝐵  ∖  ran  𝑓 )  →  ( ran  𝑓  ∩  { 𝑥 } )  =  ∅ ) | 
						
							| 33 | 32 | adantl | ⊢ ( ( 𝑓 : 𝐴 –1-1→ 𝐵  ∧  𝑥  ∈  ( 𝐵  ∖  ran  𝑓 ) )  →  ( ran  𝑓  ∩  { 𝑥 } )  =  ∅ ) | 
						
							| 34 | 9 | adantr | ⊢ ( ( 𝑓 : 𝐴 –1-1→ 𝐵  ∧  𝑥  ∈  ( 𝐵  ∖  ran  𝑓 ) )  →  ran  𝑓  ⊆  𝐵 ) | 
						
							| 35 |  | reldisj | ⊢ ( ran  𝑓  ⊆  𝐵  →  ( ( ran  𝑓  ∩  { 𝑥 } )  =  ∅  ↔  ran  𝑓  ⊆  ( 𝐵  ∖  { 𝑥 } ) ) ) | 
						
							| 36 | 34 35 | syl | ⊢ ( ( 𝑓 : 𝐴 –1-1→ 𝐵  ∧  𝑥  ∈  ( 𝐵  ∖  ran  𝑓 ) )  →  ( ( ran  𝑓  ∩  { 𝑥 } )  =  ∅  ↔  ran  𝑓  ⊆  ( 𝐵  ∖  { 𝑥 } ) ) ) | 
						
							| 37 | 33 36 | mpbid | ⊢ ( ( 𝑓 : 𝐴 –1-1→ 𝐵  ∧  𝑥  ∈  ( 𝐵  ∖  ran  𝑓 ) )  →  ran  𝑓  ⊆  ( 𝐵  ∖  { 𝑥 } ) ) | 
						
							| 38 |  | f1ssr | ⊢ ( ( 𝑓 : 𝐴 –1-1→ 𝐵  ∧  ran  𝑓  ⊆  ( 𝐵  ∖  { 𝑥 } ) )  →  𝑓 : 𝐴 –1-1→ ( 𝐵  ∖  { 𝑥 } ) ) | 
						
							| 39 | 37 38 | syldan | ⊢ ( ( 𝑓 : 𝐴 –1-1→ 𝐵  ∧  𝑥  ∈  ( 𝐵  ∖  ran  𝑓 ) )  →  𝑓 : 𝐴 –1-1→ ( 𝐵  ∖  { 𝑥 } ) ) | 
						
							| 40 | 39 | adantl | ⊢ ( ( ( 𝐴  ≺  𝐵  ∧  𝐶  ∈  𝐵 )  ∧  ( 𝑓 : 𝐴 –1-1→ 𝐵  ∧  𝑥  ∈  ( 𝐵  ∖  ran  𝑓 ) ) )  →  𝑓 : 𝐴 –1-1→ ( 𝐵  ∖  { 𝑥 } ) ) | 
						
							| 41 |  | f1dom2g | ⊢ ( ( 𝐴  ∈  V  ∧  ( 𝐵  ∖  { 𝑥 } )  ∈  V  ∧  𝑓 : 𝐴 –1-1→ ( 𝐵  ∖  { 𝑥 } ) )  →  𝐴  ≼  ( 𝐵  ∖  { 𝑥 } ) ) | 
						
							| 42 | 27 29 40 41 | syl3anc | ⊢ ( ( ( 𝐴  ≺  𝐵  ∧  𝐶  ∈  𝐵 )  ∧  ( 𝑓 : 𝐴 –1-1→ 𝐵  ∧  𝑥  ∈  ( 𝐵  ∖  ran  𝑓 ) ) )  →  𝐴  ≼  ( 𝐵  ∖  { 𝑥 } ) ) | 
						
							| 43 |  | eldifi | ⊢ ( 𝑥  ∈  ( 𝐵  ∖  ran  𝑓 )  →  𝑥  ∈  𝐵 ) | 
						
							| 44 | 43 | ad2antll | ⊢ ( ( ( 𝐴  ≺  𝐵  ∧  𝐶  ∈  𝐵 )  ∧  ( 𝑓 : 𝐴 –1-1→ 𝐵  ∧  𝑥  ∈  ( 𝐵  ∖  ran  𝑓 ) ) )  →  𝑥  ∈  𝐵 ) | 
						
							| 45 |  | simplr | ⊢ ( ( ( 𝐴  ≺  𝐵  ∧  𝐶  ∈  𝐵 )  ∧  ( 𝑓 : 𝐴 –1-1→ 𝐵  ∧  𝑥  ∈  ( 𝐵  ∖  ran  𝑓 ) ) )  →  𝐶  ∈  𝐵 ) | 
						
							| 46 |  | difsnen | ⊢ ( ( 𝐵  ∈  V  ∧  𝑥  ∈  𝐵  ∧  𝐶  ∈  𝐵 )  →  ( 𝐵  ∖  { 𝑥 } )  ≈  ( 𝐵  ∖  { 𝐶 } ) ) | 
						
							| 47 | 28 44 45 46 | syl3anc | ⊢ ( ( ( 𝐴  ≺  𝐵  ∧  𝐶  ∈  𝐵 )  ∧  ( 𝑓 : 𝐴 –1-1→ 𝐵  ∧  𝑥  ∈  ( 𝐵  ∖  ran  𝑓 ) ) )  →  ( 𝐵  ∖  { 𝑥 } )  ≈  ( 𝐵  ∖  { 𝐶 } ) ) | 
						
							| 48 |  | domentr | ⊢ ( ( 𝐴  ≼  ( 𝐵  ∖  { 𝑥 } )  ∧  ( 𝐵  ∖  { 𝑥 } )  ≈  ( 𝐵  ∖  { 𝐶 } ) )  →  𝐴  ≼  ( 𝐵  ∖  { 𝐶 } ) ) | 
						
							| 49 | 42 47 48 | syl2anc | ⊢ ( ( ( 𝐴  ≺  𝐵  ∧  𝐶  ∈  𝐵 )  ∧  ( 𝑓 : 𝐴 –1-1→ 𝐵  ∧  𝑥  ∈  ( 𝐵  ∖  ran  𝑓 ) ) )  →  𝐴  ≼  ( 𝐵  ∖  { 𝐶 } ) ) | 
						
							| 50 | 49 | expr | ⊢ ( ( ( 𝐴  ≺  𝐵  ∧  𝐶  ∈  𝐵 )  ∧  𝑓 : 𝐴 –1-1→ 𝐵 )  →  ( 𝑥  ∈  ( 𝐵  ∖  ran  𝑓 )  →  𝐴  ≼  ( 𝐵  ∖  { 𝐶 } ) ) ) | 
						
							| 51 | 50 | exlimdv | ⊢ ( ( ( 𝐴  ≺  𝐵  ∧  𝐶  ∈  𝐵 )  ∧  𝑓 : 𝐴 –1-1→ 𝐵 )  →  ( ∃ 𝑥 𝑥  ∈  ( 𝐵  ∖  ran  𝑓 )  →  𝐴  ≼  ( 𝐵  ∖  { 𝐶 } ) ) ) | 
						
							| 52 | 25 51 | mpd | ⊢ ( ( ( 𝐴  ≺  𝐵  ∧  𝐶  ∈  𝐵 )  ∧  𝑓 : 𝐴 –1-1→ 𝐵 )  →  𝐴  ≼  ( 𝐵  ∖  { 𝐶 } ) ) | 
						
							| 53 | 7 52 | exlimddv | ⊢ ( ( 𝐴  ≺  𝐵  ∧  𝐶  ∈  𝐵 )  →  𝐴  ≼  ( 𝐵  ∖  { 𝐶 } ) ) | 
						
							| 54 | 1 | adantr | ⊢ ( ( 𝐴  ≺  𝐵  ∧  ¬  𝐶  ∈  𝐵 )  →  𝐴  ≼  𝐵 ) | 
						
							| 55 |  | difsn | ⊢ ( ¬  𝐶  ∈  𝐵  →  ( 𝐵  ∖  { 𝐶 } )  =  𝐵 ) | 
						
							| 56 | 55 | breq2d | ⊢ ( ¬  𝐶  ∈  𝐵  →  ( 𝐴  ≼  ( 𝐵  ∖  { 𝐶 } )  ↔  𝐴  ≼  𝐵 ) ) | 
						
							| 57 | 56 | adantl | ⊢ ( ( 𝐴  ≺  𝐵  ∧  ¬  𝐶  ∈  𝐵 )  →  ( 𝐴  ≼  ( 𝐵  ∖  { 𝐶 } )  ↔  𝐴  ≼  𝐵 ) ) | 
						
							| 58 | 54 57 | mpbird | ⊢ ( ( 𝐴  ≺  𝐵  ∧  ¬  𝐶  ∈  𝐵 )  →  𝐴  ≼  ( 𝐵  ∖  { 𝐶 } ) ) | 
						
							| 59 | 53 58 | pm2.61dan | ⊢ ( 𝐴  ≺  𝐵  →  𝐴  ≼  ( 𝐵  ∖  { 𝐶 } ) ) |