Metamath Proof Explorer


Theorem domen

Description: Dominance in terms of equinumerosity. Example 1 of Enderton p. 146. (Contributed by NM, 15-Jun-1998)

Ref Expression
Hypothesis bren.1 𝐵 ∈ V
Assertion domen ( 𝐴𝐵 ↔ ∃ 𝑥 ( 𝐴𝑥𝑥𝐵 ) )

Proof

Step Hyp Ref Expression
1 bren.1 𝐵 ∈ V
2 1 brdom ( 𝐴𝐵 ↔ ∃ 𝑓 𝑓 : 𝐴1-1𝐵 )
3 vex 𝑓 ∈ V
4 3 f11o ( 𝑓 : 𝐴1-1𝐵 ↔ ∃ 𝑥 ( 𝑓 : 𝐴1-1-onto𝑥𝑥𝐵 ) )
5 4 exbii ( ∃ 𝑓 𝑓 : 𝐴1-1𝐵 ↔ ∃ 𝑓𝑥 ( 𝑓 : 𝐴1-1-onto𝑥𝑥𝐵 ) )
6 excom ( ∃ 𝑓𝑥 ( 𝑓 : 𝐴1-1-onto𝑥𝑥𝐵 ) ↔ ∃ 𝑥𝑓 ( 𝑓 : 𝐴1-1-onto𝑥𝑥𝐵 ) )
7 5 6 bitri ( ∃ 𝑓 𝑓 : 𝐴1-1𝐵 ↔ ∃ 𝑥𝑓 ( 𝑓 : 𝐴1-1-onto𝑥𝑥𝐵 ) )
8 bren ( 𝐴𝑥 ↔ ∃ 𝑓 𝑓 : 𝐴1-1-onto𝑥 )
9 8 anbi1i ( ( 𝐴𝑥𝑥𝐵 ) ↔ ( ∃ 𝑓 𝑓 : 𝐴1-1-onto𝑥𝑥𝐵 ) )
10 19.41v ( ∃ 𝑓 ( 𝑓 : 𝐴1-1-onto𝑥𝑥𝐵 ) ↔ ( ∃ 𝑓 𝑓 : 𝐴1-1-onto𝑥𝑥𝐵 ) )
11 9 10 bitr4i ( ( 𝐴𝑥𝑥𝐵 ) ↔ ∃ 𝑓 ( 𝑓 : 𝐴1-1-onto𝑥𝑥𝐵 ) )
12 11 exbii ( ∃ 𝑥 ( 𝐴𝑥𝑥𝐵 ) ↔ ∃ 𝑥𝑓 ( 𝑓 : 𝐴1-1-onto𝑥𝑥𝐵 ) )
13 7 12 bitr4i ( ∃ 𝑓 𝑓 : 𝐴1-1𝐵 ↔ ∃ 𝑥 ( 𝐴𝑥𝑥𝐵 ) )
14 2 13 bitri ( 𝐴𝐵 ↔ ∃ 𝑥 ( 𝐴𝑥𝑥𝐵 ) )