Metamath Proof Explorer


Theorem domeng

Description: Dominance in terms of equinumerosity, with the sethood requirement expressed as an antecedent. Example 1 of Enderton p. 146. (Contributed by NM, 24-Apr-2004)

Ref Expression
Assertion domeng ( 𝐵𝐶 → ( 𝐴𝐵 ↔ ∃ 𝑥 ( 𝐴𝑥𝑥𝐵 ) ) )

Proof

Step Hyp Ref Expression
1 breq2 ( 𝑦 = 𝐵 → ( 𝐴𝑦𝐴𝐵 ) )
2 sseq2 ( 𝑦 = 𝐵 → ( 𝑥𝑦𝑥𝐵 ) )
3 2 anbi2d ( 𝑦 = 𝐵 → ( ( 𝐴𝑥𝑥𝑦 ) ↔ ( 𝐴𝑥𝑥𝐵 ) ) )
4 3 exbidv ( 𝑦 = 𝐵 → ( ∃ 𝑥 ( 𝐴𝑥𝑥𝑦 ) ↔ ∃ 𝑥 ( 𝐴𝑥𝑥𝐵 ) ) )
5 vex 𝑦 ∈ V
6 5 domen ( 𝐴𝑦 ↔ ∃ 𝑥 ( 𝐴𝑥𝑥𝑦 ) )
7 1 4 6 vtoclbg ( 𝐵𝐶 → ( 𝐴𝐵 ↔ ∃ 𝑥 ( 𝐴𝑥𝑥𝐵 ) ) )