Description: Dominance in terms of equinumerosity, with the sethood requirement expressed as an antecedent. Example 1 of Enderton p. 146. (Contributed by NM, 24-Apr-2004)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | domeng | ⊢ ( 𝐵 ∈ 𝐶 → ( 𝐴 ≼ 𝐵 ↔ ∃ 𝑥 ( 𝐴 ≈ 𝑥 ∧ 𝑥 ⊆ 𝐵 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | breq2 | ⊢ ( 𝑦 = 𝐵 → ( 𝐴 ≼ 𝑦 ↔ 𝐴 ≼ 𝐵 ) ) | |
| 2 | sseq2 | ⊢ ( 𝑦 = 𝐵 → ( 𝑥 ⊆ 𝑦 ↔ 𝑥 ⊆ 𝐵 ) ) | |
| 3 | 2 | anbi2d | ⊢ ( 𝑦 = 𝐵 → ( ( 𝐴 ≈ 𝑥 ∧ 𝑥 ⊆ 𝑦 ) ↔ ( 𝐴 ≈ 𝑥 ∧ 𝑥 ⊆ 𝐵 ) ) ) |
| 4 | 3 | exbidv | ⊢ ( 𝑦 = 𝐵 → ( ∃ 𝑥 ( 𝐴 ≈ 𝑥 ∧ 𝑥 ⊆ 𝑦 ) ↔ ∃ 𝑥 ( 𝐴 ≈ 𝑥 ∧ 𝑥 ⊆ 𝐵 ) ) ) |
| 5 | vex | ⊢ 𝑦 ∈ V | |
| 6 | 5 | domen | ⊢ ( 𝐴 ≼ 𝑦 ↔ ∃ 𝑥 ( 𝐴 ≈ 𝑥 ∧ 𝑥 ⊆ 𝑦 ) ) |
| 7 | 1 4 6 | vtoclbg | ⊢ ( 𝐵 ∈ 𝐶 → ( 𝐴 ≼ 𝐵 ↔ ∃ 𝑥 ( 𝐴 ≈ 𝑥 ∧ 𝑥 ⊆ 𝐵 ) ) ) |