Metamath Proof Explorer


Theorem domentr

Description: Transitivity of dominance and equinumerosity. (Contributed by NM, 7-Jun-1998)

Ref Expression
Assertion domentr ( ( 𝐴𝐵𝐵𝐶 ) → 𝐴𝐶 )

Proof

Step Hyp Ref Expression
1 endom ( 𝐵𝐶𝐵𝐶 )
2 domtr ( ( 𝐴𝐵𝐵𝐶 ) → 𝐴𝐶 )
3 1 2 sylan2 ( ( 𝐴𝐵𝐵𝐶 ) → 𝐴𝐶 )