Metamath Proof Explorer


Theorem domepOLD

Description: Obsolete proof of dmep as of 26-Dec-2023. (Contributed by Scott Fenton, 27-Oct-2010) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Assertion domepOLD dom E = V

Proof

Step Hyp Ref Expression
1 equid 𝑥 = 𝑥
2 el 𝑦 𝑥𝑦
3 epel ( 𝑥 E 𝑦𝑥𝑦 )
4 3 exbii ( ∃ 𝑦 𝑥 E 𝑦 ↔ ∃ 𝑦 𝑥𝑦 )
5 2 4 mpbir 𝑦 𝑥 E 𝑦
6 1 5 2th ( 𝑥 = 𝑥 ↔ ∃ 𝑦 𝑥 E 𝑦 )
7 6 abbii { 𝑥𝑥 = 𝑥 } = { 𝑥 ∣ ∃ 𝑦 𝑥 E 𝑦 }
8 df-v V = { 𝑥𝑥 = 𝑥 }
9 df-dm dom E = { 𝑥 ∣ ∃ 𝑦 𝑥 E 𝑦 }
10 7 8 9 3eqtr4ri dom E = V