Database
ZF (ZERMELO-FRAENKEL) SET THEORY
ZF Set Theory - add the Axiom of Power Sets
Relations
domepOLD
Metamath Proof Explorer
Description: Obsolete proof of dmep as of 26-Dec-2023. (Contributed by Scott
Fenton , 27-Oct-2010) (Proof modification is discouraged.)
(New usage is discouraged.)
Ref
Expression
Assertion
domepOLD
⊢ dom E = V
Proof
Step
Hyp
Ref
Expression
1
equid
⊢ 𝑥 = 𝑥
2
el
⊢ ∃ 𝑦 𝑥 ∈ 𝑦
3
epel
⊢ ( 𝑥 E 𝑦 ↔ 𝑥 ∈ 𝑦 )
4
3
exbii
⊢ ( ∃ 𝑦 𝑥 E 𝑦 ↔ ∃ 𝑦 𝑥 ∈ 𝑦 )
5
2 4
mpbir
⊢ ∃ 𝑦 𝑥 E 𝑦
6
1 5
2th
⊢ ( 𝑥 = 𝑥 ↔ ∃ 𝑦 𝑥 E 𝑦 )
7
6
abbii
⊢ { 𝑥 ∣ 𝑥 = 𝑥 } = { 𝑥 ∣ ∃ 𝑦 𝑥 E 𝑦 }
8
df-v
⊢ V = { 𝑥 ∣ 𝑥 = 𝑥 }
9
df-dm
⊢ dom E = { 𝑥 ∣ ∃ 𝑦 𝑥 E 𝑦 }
10
7 8 9
3eqtr4ri
⊢ dom E = V