| Step |
Hyp |
Ref |
Expression |
| 1 |
|
domeng |
⊢ ( 𝐴 ∈ FinIV → ( 𝐵 ≼ 𝐴 ↔ ∃ 𝑥 ( 𝐵 ≈ 𝑥 ∧ 𝑥 ⊆ 𝐴 ) ) ) |
| 2 |
1
|
biimpa |
⊢ ( ( 𝐴 ∈ FinIV ∧ 𝐵 ≼ 𝐴 ) → ∃ 𝑥 ( 𝐵 ≈ 𝑥 ∧ 𝑥 ⊆ 𝐴 ) ) |
| 3 |
|
ensym |
⊢ ( 𝐵 ≈ 𝑥 → 𝑥 ≈ 𝐵 ) |
| 4 |
3
|
ad2antrl |
⊢ ( ( ( 𝐴 ∈ FinIV ∧ 𝐵 ≼ 𝐴 ) ∧ ( 𝐵 ≈ 𝑥 ∧ 𝑥 ⊆ 𝐴 ) ) → 𝑥 ≈ 𝐵 ) |
| 5 |
|
ssfin4 |
⊢ ( ( 𝐴 ∈ FinIV ∧ 𝑥 ⊆ 𝐴 ) → 𝑥 ∈ FinIV ) |
| 6 |
5
|
ad2ant2rl |
⊢ ( ( ( 𝐴 ∈ FinIV ∧ 𝐵 ≼ 𝐴 ) ∧ ( 𝐵 ≈ 𝑥 ∧ 𝑥 ⊆ 𝐴 ) ) → 𝑥 ∈ FinIV ) |
| 7 |
|
fin4en1 |
⊢ ( 𝑥 ≈ 𝐵 → ( 𝑥 ∈ FinIV → 𝐵 ∈ FinIV ) ) |
| 8 |
4 6 7
|
sylc |
⊢ ( ( ( 𝐴 ∈ FinIV ∧ 𝐵 ≼ 𝐴 ) ∧ ( 𝐵 ≈ 𝑥 ∧ 𝑥 ⊆ 𝐴 ) ) → 𝐵 ∈ FinIV ) |
| 9 |
2 8
|
exlimddv |
⊢ ( ( 𝐴 ∈ FinIV ∧ 𝐵 ≼ 𝐴 ) → 𝐵 ∈ FinIV ) |