Metamath Proof Explorer


Theorem domfin4

Description: A set dominated by a Dedekind finite set is Dedekind finite. (Contributed by Mario Carneiro, 16-May-2015)

Ref Expression
Assertion domfin4 ( ( 𝐴 ∈ FinIV𝐵𝐴 ) → 𝐵 ∈ FinIV )

Proof

Step Hyp Ref Expression
1 domeng ( 𝐴 ∈ FinIV → ( 𝐵𝐴 ↔ ∃ 𝑥 ( 𝐵𝑥𝑥𝐴 ) ) )
2 1 biimpa ( ( 𝐴 ∈ FinIV𝐵𝐴 ) → ∃ 𝑥 ( 𝐵𝑥𝑥𝐴 ) )
3 ensym ( 𝐵𝑥𝑥𝐵 )
4 3 ad2antrl ( ( ( 𝐴 ∈ FinIV𝐵𝐴 ) ∧ ( 𝐵𝑥𝑥𝐴 ) ) → 𝑥𝐵 )
5 ssfin4 ( ( 𝐴 ∈ FinIV𝑥𝐴 ) → 𝑥 ∈ FinIV )
6 5 ad2ant2rl ( ( ( 𝐴 ∈ FinIV𝐵𝐴 ) ∧ ( 𝐵𝑥𝑥𝐴 ) ) → 𝑥 ∈ FinIV )
7 fin4en1 ( 𝑥𝐵 → ( 𝑥 ∈ FinIV𝐵 ∈ FinIV ) )
8 4 6 7 sylc ( ( ( 𝐴 ∈ FinIV𝐵𝐴 ) ∧ ( 𝐵𝑥𝑥𝐴 ) ) → 𝐵 ∈ FinIV )
9 2 8 exlimddv ( ( 𝐴 ∈ FinIV𝐵𝐴 ) → 𝐵 ∈ FinIV )