Step |
Hyp |
Ref |
Expression |
1 |
|
domneq0.b |
⊢ 𝐵 = ( Base ‘ 𝑅 ) |
2 |
|
domneq0.t |
⊢ · = ( .r ‘ 𝑅 ) |
3 |
|
domneq0.z |
⊢ 0 = ( 0g ‘ 𝑅 ) |
4 |
|
3simpc |
⊢ ( ( 𝑅 ∈ Domn ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ) |
5 |
1 2 3
|
isdomn |
⊢ ( 𝑅 ∈ Domn ↔ ( 𝑅 ∈ NzRing ∧ ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ( ( 𝑥 · 𝑦 ) = 0 → ( 𝑥 = 0 ∨ 𝑦 = 0 ) ) ) ) |
6 |
5
|
simprbi |
⊢ ( 𝑅 ∈ Domn → ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ( ( 𝑥 · 𝑦 ) = 0 → ( 𝑥 = 0 ∨ 𝑦 = 0 ) ) ) |
7 |
6
|
3ad2ant1 |
⊢ ( ( 𝑅 ∈ Domn ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ( ( 𝑥 · 𝑦 ) = 0 → ( 𝑥 = 0 ∨ 𝑦 = 0 ) ) ) |
8 |
|
oveq1 |
⊢ ( 𝑥 = 𝑋 → ( 𝑥 · 𝑦 ) = ( 𝑋 · 𝑦 ) ) |
9 |
8
|
eqeq1d |
⊢ ( 𝑥 = 𝑋 → ( ( 𝑥 · 𝑦 ) = 0 ↔ ( 𝑋 · 𝑦 ) = 0 ) ) |
10 |
|
eqeq1 |
⊢ ( 𝑥 = 𝑋 → ( 𝑥 = 0 ↔ 𝑋 = 0 ) ) |
11 |
10
|
orbi1d |
⊢ ( 𝑥 = 𝑋 → ( ( 𝑥 = 0 ∨ 𝑦 = 0 ) ↔ ( 𝑋 = 0 ∨ 𝑦 = 0 ) ) ) |
12 |
9 11
|
imbi12d |
⊢ ( 𝑥 = 𝑋 → ( ( ( 𝑥 · 𝑦 ) = 0 → ( 𝑥 = 0 ∨ 𝑦 = 0 ) ) ↔ ( ( 𝑋 · 𝑦 ) = 0 → ( 𝑋 = 0 ∨ 𝑦 = 0 ) ) ) ) |
13 |
|
oveq2 |
⊢ ( 𝑦 = 𝑌 → ( 𝑋 · 𝑦 ) = ( 𝑋 · 𝑌 ) ) |
14 |
13
|
eqeq1d |
⊢ ( 𝑦 = 𝑌 → ( ( 𝑋 · 𝑦 ) = 0 ↔ ( 𝑋 · 𝑌 ) = 0 ) ) |
15 |
|
eqeq1 |
⊢ ( 𝑦 = 𝑌 → ( 𝑦 = 0 ↔ 𝑌 = 0 ) ) |
16 |
15
|
orbi2d |
⊢ ( 𝑦 = 𝑌 → ( ( 𝑋 = 0 ∨ 𝑦 = 0 ) ↔ ( 𝑋 = 0 ∨ 𝑌 = 0 ) ) ) |
17 |
14 16
|
imbi12d |
⊢ ( 𝑦 = 𝑌 → ( ( ( 𝑋 · 𝑦 ) = 0 → ( 𝑋 = 0 ∨ 𝑦 = 0 ) ) ↔ ( ( 𝑋 · 𝑌 ) = 0 → ( 𝑋 = 0 ∨ 𝑌 = 0 ) ) ) ) |
18 |
12 17
|
rspc2va |
⊢ ( ( ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ∧ ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ( ( 𝑥 · 𝑦 ) = 0 → ( 𝑥 = 0 ∨ 𝑦 = 0 ) ) ) → ( ( 𝑋 · 𝑌 ) = 0 → ( 𝑋 = 0 ∨ 𝑌 = 0 ) ) ) |
19 |
4 7 18
|
syl2anc |
⊢ ( ( 𝑅 ∈ Domn ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → ( ( 𝑋 · 𝑌 ) = 0 → ( 𝑋 = 0 ∨ 𝑌 = 0 ) ) ) |
20 |
|
domnring |
⊢ ( 𝑅 ∈ Domn → 𝑅 ∈ Ring ) |
21 |
20
|
3ad2ant1 |
⊢ ( ( 𝑅 ∈ Domn ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → 𝑅 ∈ Ring ) |
22 |
|
simp3 |
⊢ ( ( 𝑅 ∈ Domn ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → 𝑌 ∈ 𝐵 ) |
23 |
1 2 3
|
ringlz |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝑌 ∈ 𝐵 ) → ( 0 · 𝑌 ) = 0 ) |
24 |
21 22 23
|
syl2anc |
⊢ ( ( 𝑅 ∈ Domn ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → ( 0 · 𝑌 ) = 0 ) |
25 |
|
oveq1 |
⊢ ( 𝑋 = 0 → ( 𝑋 · 𝑌 ) = ( 0 · 𝑌 ) ) |
26 |
25
|
eqeq1d |
⊢ ( 𝑋 = 0 → ( ( 𝑋 · 𝑌 ) = 0 ↔ ( 0 · 𝑌 ) = 0 ) ) |
27 |
24 26
|
syl5ibrcom |
⊢ ( ( 𝑅 ∈ Domn ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → ( 𝑋 = 0 → ( 𝑋 · 𝑌 ) = 0 ) ) |
28 |
|
simp2 |
⊢ ( ( 𝑅 ∈ Domn ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → 𝑋 ∈ 𝐵 ) |
29 |
1 2 3
|
ringrz |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐵 ) → ( 𝑋 · 0 ) = 0 ) |
30 |
21 28 29
|
syl2anc |
⊢ ( ( 𝑅 ∈ Domn ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → ( 𝑋 · 0 ) = 0 ) |
31 |
|
oveq2 |
⊢ ( 𝑌 = 0 → ( 𝑋 · 𝑌 ) = ( 𝑋 · 0 ) ) |
32 |
31
|
eqeq1d |
⊢ ( 𝑌 = 0 → ( ( 𝑋 · 𝑌 ) = 0 ↔ ( 𝑋 · 0 ) = 0 ) ) |
33 |
30 32
|
syl5ibrcom |
⊢ ( ( 𝑅 ∈ Domn ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → ( 𝑌 = 0 → ( 𝑋 · 𝑌 ) = 0 ) ) |
34 |
27 33
|
jaod |
⊢ ( ( 𝑅 ∈ Domn ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → ( ( 𝑋 = 0 ∨ 𝑌 = 0 ) → ( 𝑋 · 𝑌 ) = 0 ) ) |
35 |
19 34
|
impbid |
⊢ ( ( 𝑅 ∈ Domn ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → ( ( 𝑋 · 𝑌 ) = 0 ↔ ( 𝑋 = 0 ∨ 𝑌 = 0 ) ) ) |