Metamath Proof Explorer


Theorem domneq0r

Description: Right multiplication by a nonzero element does not change zeroness in a domain. Compare rrgeq0 . (Contributed by SN, 21-Jun-2025)

Ref Expression
Hypotheses domneq0r.b 𝐵 = ( Base ‘ 𝑅 )
domneq0r.0 0 = ( 0g𝑅 )
domneq0r.m · = ( .r𝑅 )
domneq0r.x ( 𝜑𝑋𝐵 )
domneq0r.y ( 𝜑𝑌 ∈ ( 𝐵 ∖ { 0 } ) )
domneq0r.r ( 𝜑𝑅 ∈ Domn )
Assertion domneq0r ( 𝜑 → ( ( 𝑋 · 𝑌 ) = 0𝑋 = 0 ) )

Proof

Step Hyp Ref Expression
1 domneq0r.b 𝐵 = ( Base ‘ 𝑅 )
2 domneq0r.0 0 = ( 0g𝑅 )
3 domneq0r.m · = ( .r𝑅 )
4 domneq0r.x ( 𝜑𝑋𝐵 )
5 domneq0r.y ( 𝜑𝑌 ∈ ( 𝐵 ∖ { 0 } ) )
6 domneq0r.r ( 𝜑𝑅 ∈ Domn )
7 domnring ( 𝑅 ∈ Domn → 𝑅 ∈ Ring )
8 6 7 syl ( 𝜑𝑅 ∈ Ring )
9 5 eldifad ( 𝜑𝑌𝐵 )
10 1 3 2 8 9 ringlzd ( 𝜑 → ( 0 · 𝑌 ) = 0 )
11 10 eqeq2d ( 𝜑 → ( ( 𝑋 · 𝑌 ) = ( 0 · 𝑌 ) ↔ ( 𝑋 · 𝑌 ) = 0 ) )
12 1 2 ring0cl ( 𝑅 ∈ Ring → 0𝐵 )
13 8 12 syl ( 𝜑0𝐵 )
14 1 2 3 4 13 5 6 domnrcanb ( 𝜑 → ( ( 𝑋 · 𝑌 ) = ( 0 · 𝑌 ) ↔ 𝑋 = 0 ) )
15 11 14 bitr3d ( 𝜑 → ( ( 𝑋 · 𝑌 ) = 0𝑋 = 0 ) )